79 research outputs found

    Detection of Methicillin Resistant Staphylococcus aureus and Determination of Minimum Inhibitory Concentration of Vancomycin for Staphylococcus aureus Isolated from Pus/Wound Swab Samples of the Patients Attending a Tertiary Care Hospital in Kathmandu, Ne

    Get PDF
    The present study was conducted to evaluate the performance of cefoxitin disc diffusion method and oxacillin broth microdilution method for detection of methicillin resistant S. aureus (MRSA), taking presence of mecA gene as reference. In addition, inducible clindamycin resistance and beta-lactamase production were studied and minimum inhibitory concentration (MIC) of vancomycin for S. aureus isolates was determined. A total of 711 nonrepeated pus/wound swab samples from different anatomic locations were included in the study. The Staphylococcus aureus was identified on the basis of colony morphology, Gram's stain, and biochemical tests. A total of 110 (15.47%) S. aureus isolates were recovered, of which 39 (35.50%) isolates were identified as MRSA by cefoxitin disc diffusion method. By oxacillin broth microdilution method, 31.82% of the Staphylococcus aureus isolates were found to be MRSA. However, mecA gene was present in only 29.1% of the isolates. Further, beta-lactamase production was observed in 71.82% of the isolates, while inducible clindamycin resistance was found in 10% of S. aureus isolates. The MIC value of vancomycin for S. aureus ranged from 0.016 g/mL to 1 g/mL. On the basis of the absolute sensitivity (100%), both phenotypic methods could be employed for routine diagnosis of MRSA in clinical microbiology laboratory; however cefoxitin disc diffusion could be preferred over MIC method considering time and labour factor

    Prognosis of West Nile virus associated acute flaccid paralysis: a case series

    Get PDF
    Introduction: Little is known about the long-term health related quality of life outcomes in patients with West Nile virus associated acute flaccid paralysis. We describe the quality of life scores of seven patients with acute flaccid paralysis who presented to hospital between 2003 and 2006, and were followed for up to two years. Case presentations: Between 2003 and 2006, 157 symptomatic patients with West Nile virus were enrolled in a longitudinal cohort study of West Nile virus in Canada. Seven patients (4%) had acute flaccid paralysis. The firs

    Challenges and possible conservation implications of recolonizing dholes Cuon alpinus in Nepal

    Get PDF
    The Endangered dhole Cuon alpinus is a medium-sized canid that was historically distributed widely across East, Central, South and Southeast Asia. In Nepal, following heavy persecution during the 1970s and 1980s, the species was locally extirpated across large parts of the country. After decades of near absence, the dhole is reportedly showing signs of recovery in various areas of Nepal. We carried out three surveys using camera traps (resulting in a total of 6,550 camera-trap days), reviewed literature and interviewed herders and conservation practitioners (40 interviews) to determine the historical and current distribution of dholes in the country, and the species’ current status. Our camera traps recorded five images of dholes, and the literature review and interview survey provided further insights into the historical and current presence of dholes in Nepal. The combined findings suggest dholes have recolonized many areas where they had been locally extirpated, such as the Annapurna Conservation Area in central Nepal and the Tinjure–Milke–Jaljale forests in the eastern part of the country. Although these returns are encouraging, challenges remain for dhole recolonization, including conflict with livestock herders, human hunting of wild ungulates affecting the species’ prey base, increasing infrastructure development in forested areas, and diseases.The Rufford Foundation, Bernd Thies Stiftung and Rural Reconstruction Nepal.https://www.cambridge.org/core/journals/oryxhj2024Zoology and EntomologySDG-15:Life on lan

    Predictors of inhospital mortality and re-hospitalization in older adults with community-acquired pneumonia: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A better understanding of potentially modifiable predictors of in-hospital mortality and re-admission to the hospital following discharge may help to improve management of community-acquired pneumonia in older adults. We aimed to assess the associations of potentially modifiable factors with mortality and re-hospitalization in older adults hospitalized with community-acquired pneumonia.</p> <p>Methods</p> <p>A prospective cohort study was conducted from July 2003 to April 2005 in two Canadian cities. Patients aged 65 years or older hospitalized for community-acquired pneumonia were followed up for up to 30 days from initial hospitalization for mortality and these patients who were discharged alive within 30 days of initial hospitalization were followed up to 90 days of initial hospitalization for re-hospitalization. Separate logistic regression analyses were performed identify the predictors of mortality and re-hospitalization.</p> <p>Results</p> <p>Of 717 enrolled patients hospitalized for community-acquired pneumonia, 49 (6.8%) died within 30 days of hospital admission. Among these patients, 526 were discharged alive within 30 days of hospitalization of whom 58 (11.2%) were re-hospitalized within 90 days of initial hospitalization. History of hip fracture (odds ratio (OR) = 4.00, 95% confidence interval (CI) = (1.46, 10.96), P = .007), chronic obstructive pulmonary disease (OR = 2.31, 95% CI = (1.18, 4.50), P = .014), cerebrovascular disease (OR = 2.11, 95% CI = (1.03, 4.31), P = .040) were associated with mortality. Male sex (OR = 2.35, 95% CI = (1.13, 4.85), P = .022) was associated with re-hospitalization while vitamin E supplementation was protective (OR = 0.37 (0.16, 0.90), P = .028). Lower socioeconomic status, prior influenza and pneumococcal vaccinations, appropriate antibiotic prescription upon admission, and lower nutrition risk were not significantly associated with mortality or re-hospitalization.</p> <p>Conclusion</p> <p>Chronic comorbidities appear to be the most important predictors of death and re-hospitalization in older adults hospitalized with community-acquired pneumonia while vitamin E supplementation was protective.</p

    Incorporating Biodiversity Impact into Environmental Life Cycle Assessment of Woodchips for Bioethanol Production

    No full text
    A clean and sustainable source of energy is important for the development of a nation. The replacement of fossil fuels with renewable energy is an important strategy promoted by oil consuming countries, notably the U.S. Among the explored sources of alternative energy, ethanol from biomass has garnered much support owing to its renewal and domestic label. Nevertheless, the environmental benefits from bioethanol production depend on the production and processing operations of feedstocks, and fuel and other material inputs during feedstock growth. Similarly, forest biomass harvesting has issues on land use and biodiversity impacts. As a result, environmental and economic viabilities along with potential impacts on land use and biodiversity are important factors for consideration before embarking on a large scale commercial production of bioethanol. One of the tools to assess the environmental sustainability of a product system is life cycle assessment (LCA), which accounts resources consumption and environmental emissions across all life stages of a product. The major life cycle impact categories considered in current LCA practice include climate change potential, acidification potential, eutrophication potential, photochemical oxidants, fossil fuel depletion, fresh water toxicity, etc. Conventional LCA methodology, however, does not account for biodiversity impacts and land use implications in its current methodological framework. This research first applies the conventional LCA approach to analyze the environmental impacts of woodchips production in view of the impending large scale bioethanol production in the U.S. Two types of forests are considered: naturally and artificially regenerated forests. The results show that the dominant environmental contributors in both scenarios for woodchips production are climate change potential and human toxicity potential. Most of the impacts are due to the combustion of fossil fuels (i.e. diesel) used for operating machinery and transportation. The other component of this study is the development of a framework to incorporate biodiversity impact category into the existing LCA method. It applies this framework in the context of woodchips production used in biorefinery for ethanol production. In the revised framework, the Landscape Management System (LMS) tool is used to model forest management activities for a set of harvesting systems under consideration. Forest stands level information, such as habitat type and stand development stages, are used to prepare a habitat-species relationship matrix. This matrix information was incorporated into LCA inventory modeling to prepare a set of characterization factors. Habitat type classifications and corresponding area calculations are spatially presented using Geographical Information Systems (GIS). Different biodiversity impact indicators (e.g. species richness and habitat naturalness, etc.) are used to model the biodiversity impact. The results show that biodiversity impact increases linearly as the ethanol blending proportion to gasoline is increased. The potential biodiversity impact is found to be higher in the first decade of the considered time frame, and it shows a leveling trend towards the next decades. From this analysis the general conclusion is drawn that when a whole rotation length of forest is considered, the potential biodiversity impact is relatively unchanged after the first few decades

    Integrated Life Cycle Sustainability Assessment of Forest Based Drop-In Biofuel

    No full text
    Biofuel production requires careful sustainability analysis across its life cycle that compares the tradeoffs between the environmental, economic and social costs and benefits. This dissertation focuses on assessing the sustainability of ThermoDeOxygenated (TDO) drop-in biofuel technology, which is compatible with the existing transportation infrastructure, developed at the University of Maine. The assessment was carried out in an integrated framework by incorporating social, environmental and economic variables in R software platform. A life cycle assessment model was developed to assess the energy and greenhouse gas emissions of drop-in biofuel. It was found that this fuel has remarkably low greenhouse gas emissions and fossil fuel energy requirement compared to other similar technologies and conventional diesel. The level of emission reductions depend on how the co-products are treated. For example, when there is excess char and that displaces coal, an energy intense non-renewable fuel, the benefits are remarkably high. These benefits are relatively low when less energy intense products such as biomass and electricity consumption mix are displaced. The Renewable Fuel Standard (RSF2) compliant feedstock (i.e. forest biomass) availability was estimated taking into consideration both economic and ecological factors. The new estimates found that 3.9 million dry tons of biomass can be harvested from Maine’s forest annually. The study found that the Environmenal Protection Agency (EPA)’s definition of renewable biomass is unclear, especially in the case of naturally regenerated forest biomass in Maine, which significantly affects the amount of RFS compliant biomass from Maine’s forest. A key outcome of this dissertation is that there is a need for integrated sustainability assessment models to better inform decision makers. This dissertation has developed an integrated framework based on multi-criteria decision analysis to evaluate the sustainability of drop-in biofuel

    Integrated Life Cycle Sustainability Assessment of Forest Based Drop-In Biofuel

    Get PDF
    Biofuel production requires careful sustainability analysis across its life cycle that compares the tradeoffs between the environmental, economic and social costs and benefits. This dissertation focuses on assessing the sustainability of ThermoDeOxygenated (TDO) drop-in biofuel technology, which is compatible with the existing transportation infrastructure, developed at the University of Maine. The assessment was carried out in an integrated framework by incorporating social, environmental and economic variables in R software platform. A life cycle assessment model was developed to assess the energy and greenhouse gas emissions of drop-in biofuel. It was found that this fuel has remarkably low greenhouse gas emissions and fossil fuel energy requirement compared to other similar technologies and conventional diesel. The level of emission reductions depend on how the co-products are treated. For example, when there is excess char and that displaces coal, an energy intense non-renewable fuel, the benefits are remarkably high. These benefits are relatively low when less energy intense products such as biomass and electricity consumption mix are displaced. The Renewable Fuel Standard (RSF2) compliant feedstock (i.e. forest biomass) availability was estimated taking into consideration both economic and ecological factors. The new estimates found that 3.9 million dry tons of biomass can be harvested from Maine’s forest annually. The study found that the Environmenal Protection Agency (EPA)’s definition of renewable biomass is unclear, especially in the case of naturally regenerated forest biomass in Maine, which significantly affects the amount of RFS compliant biomass from Maine’s forest. A key outcome of this dissertation is that there is a need for integrated sustainability assessment models to better inform decision makers. This dissertation has developed an integrated framework based on multi-criteria decision analysis to evaluate the sustainability of drop-in biofuel
    corecore