931 research outputs found

    Finite top-mass effects in gluon-induced Higgs production with a jet-veto at NNLO

    Get PDF
    Effects from a finite top quark mass on the H+n-jet cross section through gluon fusion are studied for n=0/n≥1n=0/n\ge 1 at NNLO/NLO QCD. For this purpose, sub-leading terms in 1/mt1/m_t are calculated. We show that the asymptotic expansion of the jet-vetoed cross section at NNLO is very well behaved and that the heavy-top approximation is valid at the five permille level up to jet-veto cuts of 300 GeV. For the inclusive Higgs+jet rate, we introduce a matching procedure that allows for a reliable prediction of the top-mass effects using the expansion in 1/mt1/m_t. The quality of the effective field theory to evaluate differential K-factors for the distribution of the hardest jet is found to be better than 1-2% as long as the transverse momentum of the jet is integrated out or remains below about 150 GeV.Comment: 22 pages, 14 figure

    Multiplicative Approximations, Optimal Hypervolume Distributions, and the Choice of the Reference Point

    Full text link
    Many optimization problems arising in applications have to consider several objective functions at the same time. Evolutionary algorithms seem to be a very natural choice for dealing with multi-objective problems as the population of such an algorithm can be used to represent the trade-offs with respect to the given objective functions. In this paper, we contribute to the theoretical understanding of evolutionary algorithms for multi-objective problems. We consider indicator-based algorithms whose goal is to maximize the hypervolume for a given problem by distributing {\mu} points on the Pareto front. To gain new theoretical insights into the behavior of hypervolume-based algorithms we compare their optimization goal to the goal of achieving an optimal multiplicative approximation ratio. Our studies are carried out for different Pareto front shapes of bi-objective problems. For the class of linear fronts and a class of convex fronts, we prove that maximizing the hypervolume gives the best possible approximation ratio when assuming that the extreme points have to be included in both distributions of the points on the Pareto front. Furthermore, we investigate the choice of the reference point on the approximation behavior of hypervolume-based approaches and examine Pareto fronts of different shapes by numerical calculations

    ZγZ\gamma production at NNLO including anomalous couplings

    Full text link
    In this paper we present a next-to-next-to-leading order (NNLO) QCD calculation of the processes pp→l+l−γpp\rightarrow l^+l^-\gamma and pp→ννˉγpp\rightarrow \nu\bar\nu\gamma that we have implemented in MCFM. Our calculation includes QCD corrections at NNLO both for the Standard Model (SM) and additionally in the presence of ZγγZ\gamma\gamma and ZZγZZ\gamma anomalous couplings. We compare our implementation, obtained using the jettiness slicing approach, with a previous SM calculation and find broad agreement. Focusing on the sensitivity of our results to the slicing parameter, we show that using our setup we are able to compute NNLO cross sections with numerical uncertainties of about 0.1%0.1\%, which is small compared to residual scale uncertainties of a few percent. We study potential improvements using two different jettiness definitions and the inclusion of power corrections. At s=13\sqrt{s}=13 TeV we present phenomenological results and consider ZγZ\gamma as a background to H→ZγH\to Z\gamma production. We find that, with typical cuts, the inclusion of NNLO corrections represents a small effect and loosens the extraction of limits on anomalous couplings by about 10%10\%.Comment: 30 pages, 14 figure

    Modeling structural and electronic properties of nano-scale systems

    Get PDF
    Computergestütze Modellierung von organischen elektronsichen Materialien durch gezielte Untersuchung mikroskopischer Prozesse und Berechnung molekülspezifischer Materialparameter ermöglicht die effiziente Entwicklung langlebiger, effizienter Bauteile. In dieser Arbeit werden die strukturellen und elektronischen Eigenschaften organischer und metall-organischer Schichten untersucht, sowie effiziente Simulationsmethoden (weiter-)entwickelt
    • …
    corecore