26,001 research outputs found

    Strong entanglement causes low gate fidelity in inaccurate one-way quantum computation

    Full text link
    We study how entanglement among the register qubits affects the gate fidelity in the one-way quantum computation if a measurement is inaccurate. We derive an inequality which shows that the mean gate fidelity is upper bounded by a decreasing function of the magnitude of the error of the measurement and the amount of the entanglement between the measured qubit and other register qubits. The consequence of this inequality is that, for a given amount of entanglement, which is theoretically calculated once the algorithm is fixed, we can estimate from this inequality how small the magnitude of the error should be in order not to make the gate fidelity below a threshold, which is specified by a technical requirement in a particular experimental setup or by the threshold theorem of the fault-tolerant quantum computation.Comment: 4 pages, 3 figure

    Theoretical Setting of Inner Reversible Quantum Measurements

    Full text link
    We show that any unitary transformation performed on the quantum state of a closed quantum system, describes an inner, reversible, generalized quantum measurement. We also show that under some specific conditions it is possible to perform a unitary transformation on the state of the closed quantum system by means of a collection of generalized measurement operators. In particular, given a complete set of orthogonal projectors, it is possible to implement a reversible quantum measurement that preserves the probabilities. In this context, we introduce the concept of "Truth-Observable", which is the physical counterpart of an inner logical truth.Comment: 11 pages. More concise, shortened version for submission to journal. References adde

    Optimal Covariant Measurement of Momentum on a Half Line in Quantum Mechanics

    Full text link
    We cannot perform the projective measurement of a momentum on a half line since it is not an observable. Nevertheless, we would like to obtain some physical information of the momentum on a half line. We define an optimality for measurement as minimizing the variance between an inferred outcome of the measured system before a measuring process and a measurement outcome of the probe system after the measuring process, restricting our attention to the covariant measurement studied by Holevo. Extending the domain of the momentum operator on a half line by introducing a two dimensional Hilbert space to be tensored, we make it self-adjoint and explicitly construct a model Hamiltonian for the measured and probe systems. By taking the partial trace over the newly introduced Hilbert space, the optimal covariant positive operator valued measure (POVM) of a momentum on a half line is reproduced. We physically describe the measuring process to optimally evaluate the momentum of a particle on a half line.Comment: 12 pages, 3 figure

    Universal Uncertainty Principle in the Measurement Operator Formalism

    Full text link
    Heisenberg's uncertainty principle has been understood to set a limitation on measurements; however, the long-standing mathematical formulation established by Heisenberg, Kennard, and Robertson does not allow such an interpretation. Recently, a new relation was found to give a universally valid relation between noise and disturbance in general quantum measurements, and it has become clear that the new relation plays a role of the first principle to derive various quantum limits on measurement and information processing in a unified treatment. This paper examines the above development on the noise-disturbance uncertainty principle in the model-independent approach based on the measurement operator formalism, which is widely accepted to describe a class of generalized measurements in the field of quantum information. We obtain explicit formulas for the noise and disturbance of measurements given by the measurement operators, and show that projective measurements do not satisfy the Heisenberg-type noise-disturbance relation that is typical in the gamma-ray microscope thought experiments. We also show that the disturbance on a Pauli operator of a projective measurement of another Pauli operator constantly equals the square root of 2, and examine how this measurement violates the Heisenberg-type relation but satisfies the new noise-disturbance relation.Comment: 11 pages. Based on the author's invited talk at the 9th International Conference on Squeezed States and Uncertainty Relations (ICSSUR'2005), Besancon, France, May 2-6, 200

    Preparation of pure and mixed polarization qubits and the direct measurement of figures of merit

    Get PDF
    Non-classical joint measurements can hugely improve the efficiency with which certain figures of merit of quantum systems are measured. We use such a measurement to determine a particular figure of merit, the purity, for a polarization qubit. In the process we highlight some of subtleties involved in common methods for generating decoherence in quantum optics.Comment: 5 pages, 3 figures, 1 tabl

    3C 295, a cluster and its cooling flow at z=0.46

    Get PDF
    We present ROSAT HRI data of the distant and X-ray luminous (L_x(bol)=2.6^ {+0.4}_{-0.2} 10^{45}erg/sec) cluster of galaxies 3C 295. We fit both a one-dimensional and a two-dimensional isothermal beta-model to the data, the latter one taking into account the effects of the point spread function (PSF). For the error analysis of the parameters of the two-dimensional model we introduce a Monte-Carlo technique. Applying a substructure analysis, by subtracting a cluster model from the data, we find no evidence for a merger, but we see a decrement in emission South-East of the center of the cluster, which might be due to absorption. We confirm previous results by Henry & Henriksen(1986) that 3C 295 hosts a cooling flow. The equations for the simple and idealized cooling flow analysis presented here are solely based on the isothermal beta-model, which fits the data very well, including the center of the cluster. We determine a cooling flow radius of 60-120kpc and mass accretion rates of dot{M}=400-900 Msun/y, depending on the applied model and temperature profile. We also investigate the effects of the ROSAT PSF on our estimate of dot{M}, which tends to lead to a small overestimate of this quantity if not taken into account. This increase of dot{M} (10-25%) can be explained by a shallower gravitational potential inferred by the broader overall profile caused by the PSF, which diminishes the efficiency of mass accretion. We also determine the total mass of the cluster using the hydrostatic approach. At a radius of 2.1 Mpc, we estimate the total mass of the cluster (M{tot}) to be (9.2 +/- 2.7) 10^{14}Msun. For the gas to total mass ratio we get M{gas}/M{tot} =0.17-0.31, in very good agreement with the results for other clusters of galaxies, giving strong evidence for a low density universe.Comment: 26 pages, 7 figures, accepted for publication in Ap

    Low Frequency VLA Observations of Abell 754: Evidence for a Cluster Radio Halo and Possible Radio Relics

    Get PDF
    We present 74 MHz and 330 MHz VLA observations of Abell 754. Diffuse, halo-like emission is detected from the center of the cluster at both frequencies. At 330 MHz the resolution of 90'' distinguishes this extended emission from previously known point sources. In addition to the halo and at a much lower level, outlying steep-spectrum emission regions straddle the cluster center and are seen only at 74 MHz. The location, morphology and spectrum of this emission are all highly suggestive of at least one, and possibly two cluster radio relics. Easily obtained higher resolution, higher sensitivity VLA observations at both frequencies are required to confirm the extended nature of the halo-like emission and the 74 MHz relic detections. However, since there is prior evidence that this cluster is or has recently been in the process of a major merger event, the possible discovery of relics in this system is of great interest in light of recent observational and theoretical evidence in favor of a merger-relic connection. We discuss the possible role the merger shock waves, which are seen in the X-ray emission, may have played in the formation of the halo and radio relics in A754.Comment: 15 pages including 4 figures. Accepted for publication by Ap

    Frequency-dependent reflection of spin waves from a magnetic inhomogeneity induced by a surface DC-current

    Full text link
    The reflectivity of a highly localized magnetic inhomogeneity is experimentally studied. The inhomogeneity is created by a dc-current carrying wire placed on the surface of a ferrite film. The reflection of propagating dipole-dominated spin-wave pulses is found to be strongly dependent on the spin-wave frequency if the current locally increases the magnetic field. In the opposite case the frequency dependence is negligible.Comment: 3 pages, 3 figure
    • …
    corecore