1,241 research outputs found

    Electrical observation of a tunable band gap in bilayer graphene nanoribbons at room temperature

    Full text link
    We investigate the transport properties of double-gated bilayer graphene nanoribbons at room temperature. The devices were fabricated using conventional CMOS-compatible processes. By analyzing the dependence of the resistance at the charge neutrality point as a function of the electric field applied perpendicular to the graphene surface, we show that a band gap in the density of states opens, reaching an effective value of ~sim50 meV. This demonstrates the potential of bilayer graphene as FET channel material in a conventional CMOS environment.Comment: 3 pages, 3 figure

    Subsquares Approach - Simple Scheme for Solving Overdetermined Interval Linear Systems

    Full text link
    In this work we present a new simple but efficient scheme - Subsquares approach - for development of algorithms for enclosing the solution set of overdetermined interval linear systems. We are going to show two algorithms based on this scheme and discuss their features. We start with a simple algorithm as a motivation, then we continue with a sequential algorithm. Both algorithms can be easily parallelized. The features of both algorithms will be discussed and numerically tested.Comment: submitted to PPAM 201

    Algebraic lattice constellations: bounds on performance

    Get PDF
    In this work, we give a bound on performance of any full-diversity lattice constellation constructed from algebraic number fields. We show that most of the already available constructions are almost optimal in the sense that any further improvement of the minimum product distance would lead to a negligible coding gain. Furthermore, we discuss constructions, minimum product distance, and bounds for full-diversity complex rotated Z[i]/sup n/-lattices for any dimension n, which avoid the need of component interleaving

    Analysis of ultrasonic transducers with fractal architecture

    Get PDF
    Ultrasonic transducers composed of a periodic piezoelectric composite are generally accepted as the design of choice in many applications. Their architecture is normally very regular and this is due to manufacturing constraints rather than performance optimisation. Many of these manufacturing restrictions no longer hold due to new production methods such as computer controlled, laser cutting, and so there is now freedom to investigate new types of geometry. In this paper, the plane wave expansion model is utilised to investigate the behaviour of a transducer with a self-similar architecture. The Cantor set is utilised to design a 2-2 conguration, and a 1-3 conguration is investigated with a Sierpinski Carpet geometry

    The Weyl bundle as a differentiable manifold

    Full text link
    Construction of an infinite dimensional differentiable manifold R∞{\mathbb R}^{\infty} not modelled on any Banach space is proposed. Definition, metric and differential structures of a Weyl algebra and a Weyl algebra bundle are presented. Continuity of the ∘\circ-product in the Tichonov topology is proved. Construction of the ∗*-product of the Fedosov type in terms of theory of connection in a fibre bundle is explained.Comment: 31 pages; revised version - some typoes have been eliminated, notation has been simplifie

    A note on the convergence of parametrised non-resonant invariant manifolds

    Full text link
    Truncated Taylor series representations of invariant manifolds are abundant in numerical computations. We present an aposteriori method to compute the convergence radii and error estimates of analytic parametrisations of non-resonant local invariant manifolds of a saddle of an analytic vector field, from such a truncated series. This enables us to obtain local enclosures, as well as existence results, for the invariant manifolds
    • 

    corecore