16 research outputs found

    Filamin A, the Arp2/3 complex, and the morphology and function of cortical actin filaments in human melanoma cells

    Get PDF
    The Arp2/3 complex and filamin A (FLNa) branch actin filaments. To define the role of these actin-binding proteins in cellular actin architecture, we compared the morphology of FLNa-deficient human melanoma (M2) cells and three stable derivatives of these cells expressing normal FLNa concentrations. All the cell lines contain similar amounts of the Arp2/3 complex. Serum addition causes serum-starved M2 cells to extend flat protrusions transiently; thereafter, the protrusions turn into spherical blebs and the cells do not crawl. The short-lived lamellae of M2 cells contain a dense mat of long actin filaments in contrast to a more three-dimensional orthogonal network of shorter actin filaments in lamellae of identically treated FLNa-expressing cells capable of translational locomotion. FLNa-specific antibodies localize throughout the leading lamellae of these cells at junctions between orthogonally intersecting actin filaments. Arp2/3 complex–specific antibodies stain diffusely and label a few, although not the same, actin filament overlap sites as FLNa antibody. We conclude that FLNa is essential in cells that express it for stabilizing orthogonal actin networks suitable for locomotion. Contrary to some proposals, Arp2/3 complex–mediated branching of actin alone is insufficient for establishing an orthogonal actin organization or maintaining mechanical stability at the leading edge

    New insights into valve-related intramural and intracellular bacterial diversity in infective endocarditis

    Get PDF
    Aims: In infective endocarditis (IE), a severe inflammatory disease of the endocardium with an unchanged incidence and mortality rate over the past decades, only 1% of the cases have been described as polymicrobial infections based on microbiological approaches. The aim of this study was to identify potential biodiversity of bacterial species from infected native and prosthetic valves. Furthermore, we compared the ultrastructural micro-environments to detect the localization and distribution patterns of pathogens in IE. Material and methods: Using next-generation sequencing (NGS) of 16S rDNA, which allows analysis of the entire bacterial community within a single sample, we investigated the biodiversity of infectious bacterial species from resected native and prosthetic valves in a clinical cohort of 8 IE patients. Furthermore, we investigated the ultrastructural infected valve micro-environment by focused ion beam scanning electron microscopy (FIB-SEM). Results: Biodiversity was detected in 7 of 8 resected heart valves. This comprised 13 bacterial genera and 16 species. In addition to 11 pathogens already described as being IE related, 5 bacterial species were identified as having a novel association. In contrast, valve and blood culture-based diagnosis revealed only 4 species from 3 bacterial genera and did not show any relevant antibiotic resistance. The antibiotics chosen on this basis for treatment, however, did not cover the bacterial spectra identified by our amplicon sequencing analysis in 4 of 8 cases. In addition to intramural distribution patterns of infective bacteria, intracellular localization with evidence of bacterial immune escape mechanisms was identified. Conclusion: The high frequency of polymicrobial infections, pathogen diversity, and intracellular persistence of common IE-causing bacteria may provide clues to help explain the persistent and devastating mortality rate observed for IE. Improved bacterial diagnosis by 16S rDNA NGS that increases the ability to tailor antibiotic therapy may result in improved outcomes
    corecore