251 research outputs found

    On the black hole limit of rotating discs and rings

    Full text link
    Solutions to Einstein's field equations describing rotating fluid bodies in equilibrium permit parametric (i.e. quasi-stationary) transitions to the extreme Kerr solution (outside the horizon). This has been shown analytically for discs of dust and numerically for ring solutions with various equations of state. From the exterior point of view, this transition can be interpreted as a (quasi) black hole limit. All gravitational multipole moments assume precisely the values of an extremal Kerr black hole in the limit. In the present paper, the way in which the black hole limit is approached is investigated in more detail by means of a parametric Taylor series expansion of the exact solution describing a rigidly rotating disc of dust. Combined with numerical calculations for ring solutions our results indicate an interesting universal behaviour of the multipole moments near the black hole limit.Comment: 18 pages, 4 figures; Dedicated to Gernot Neugebauer on the occasion of his 70th birthda

    Relativistic dust disks and the Wilson-Mathews approach

    Full text link
    Treating problems in full general relativity is highly complex and frequently approximate methods are employed to simplify the solution. We present comparative solutions of a infinitesimally thin relativistic, stationary, rigidly rotating disk obtained using the full equations and the approximate approach suggested by Wilson & Mathews. We find that the Wilson-Mathews method has about the same accuracy as the first post-Newtonian approximation.Comment: 4 Pages, 5 eps-figures, uses revtex.sty. Submitted to PR

    Non-existence of stationary two-black-hole configurations

    Get PDF
    We resume former discussions of the question, whether the spin-spin repulsion and the gravitational attraction of two aligned black holes can balance each other. To answer the question we formulate a boundary value problem for two separate (Killing-) horizons and apply the inverse (scattering) method to solve it. Making use of results of Manko, Ruiz and Sanabria-G\'omez and a novel black hole criterion, we prove the non-existence of the equilibrium situation in question.Comment: 15 pages, 3 figures; Contribution to Juergen Ehlers Memorial Issue (GeRG journal

    Boundary value problems for the stationary axisymmetric Einstein equations: a disk rotating around a black hole

    Full text link
    We solve a class of boundary value problems for the stationary axisymmetric Einstein equations corresponding to a disk of dust rotating uniformly around a central black hole. The solutions are given explicitly in terms of theta functions on a family of hyperelliptic Riemann surfaces of genus 4. In the absence of a disk, they reduce to the Kerr black hole. In the absence of a black hole, they reduce to the Neugebauer-Meinel disk.Comment: 46 page

    Harrison transformation of hyperelliptic solutions and charged dust disks

    Full text link
    We use a Harrison transformation on solutions to the stationary axisymmetric Einstein equations to generate solutions of the Einstein-Maxwell equations. The case of hyperelliptic solutions to the Ernst equation is studied in detail. Analytic expressions for the metric and the multipole moments are obtained. As an example we consider the transformation of a family of counter-rotating dust disks. The resulting solutions can be interpreted as disks with currents and matter with a purely azimuthal pressure or as two streams of freely moving charged particles. We discuss interesting limiting cases as the extreme limit where the charge becomes identical to the mass, and the ultrarelativistic limit where the central redshift diverges.Comment: 20 pages, 9 figure

    Semiparametric theory and empirical processes in causal inference

    Full text link
    In this paper we review important aspects of semiparametric theory and empirical processes that arise in causal inference problems. We begin with a brief introduction to the general problem of causal inference, and go on to discuss estimation and inference for causal effects under semiparametric models, which allow parts of the data-generating process to be unrestricted if they are not of particular interest (i.e., nuisance functions). These models are very useful in causal problems because the outcome process is often complex and difficult to model, and there may only be information available about the treatment process (at best). Semiparametric theory gives a framework for benchmarking efficiency and constructing estimators in such settings. In the second part of the paper we discuss empirical process theory, which provides powerful tools for understanding the asymptotic behavior of semiparametric estimators that depend on flexible nonparametric estimators of nuisance functions. These tools are crucial for incorporating machine learning and other modern methods into causal inference analyses. We conclude by examining related extensions and future directions for work in semiparametric causal inference

    Density functional study of the adsorption of K on the Ag(111) surface

    Full text link
    Full-potential gradient corrected density functional calculations of the adsorption of potassium on the Ag(111) surface have been performed. The considered structures are Ag(111) (root 3 x root 3) R30degree-K and Ag(111) (2 x 2)-K. For the lower coverage, fcc, hcp and bridge site; and for the higher coverage all considered sites are practically degenerate. Substrate rumpling is most important for the top adsorption site. The bond length is found to be nearly identical for the two coverages, in agreement with recent experiments. Results from Mulliken populations, bond lengths, core level shifts and work functions consistently indicate a small charge transfer from the potassium atom to the substrate, which is slightly larger for the lower coverage.Comment: to appear in Phys Rev

    Finite and infinite-dimensional symmetries of pure N=2 supergravity in D=4

    Full text link
    We study the symmetries of pure N=2 supergravity in D=4. As is known, this theory reduced on one Killing vector is characterised by a non-linearly realised symmetry SU(2,1) which is a non-split real form of SL(3,C). We consider the BPS brane solutions of the theory preserving half of the supersymmetry and the action of SU(2,1) on them. Furthermore we provide evidence that the theory exhibits an underlying algebraic structure described by the Lorentzian Kac-Moody group SU(2,1)^{+++}. This evidence arises both from the correspondence between the bosonic space-time fields of N=2 supergravity in D=4 and a one-parameter sigma-model based on the hyperbolic group SU(2,1)^{++}, as well as from the fact that the structure of BPS brane solutions is neatly encoded in SU(2,1)^{+++}. As a nice by-product of our analysis, we obtain a regular embedding of the Kac-Moody algebra su(2,1)^{+++} in e_{11} based on brane physics.Comment: 70 pages, final version published in JHE

    Signatures of the slow solar wind streams from active regions in the inner corona

    Full text link
    Some of local sources of the slow solar wind can be associated with spectroscopically detected plasma outflows at edges of active regions accompanied with specific signatures in the inner corona. The EUV telescopes (e.g. SPIRIT/CORONAS-F, TESIS/CORONAS-Photon and SWAP/PROBA2) sometimes observed extended ray-like structures seen at the limb above active regions in 1MK iron emission lines and described as "coronal rays". To verify the relationship between coronal rays and plasma outflows, we analyze an isolated active region (AR) adjacent to small coronal hole (CH) observed by different EUV instruments in the end of July - beginning of August 2009. On August 1 EIS revealed in the AR two compact outflows with the Doppler velocities V =10-30 km/s accompanied with fan loops diverging from their regions. At the limb the ARCH interface region produced coronal rays observed by EUVI/STEREO-A on July 31 as well as by TESIS on August 7. The rays were co-aligned with open magnetic field lines expanded to the streamer stalks. Using the DEM analysis, it was found that the fan loops diverged from the outflow regions had the dominant temperature of ~1 MK, which is similar to that of the outgoing plasma streams. Parameters of the solar wind measured by STEREO-B, ACE, WIND, STEREO-A were conformed with identification of the ARCH as a source region at the Wang-Sheeley-Arge map of derived coronal holes for CR 2086. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.Comment: Accepted for publication in Solar Physics; 31 Pages; 13 Figure

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure
    • …
    corecore