578 research outputs found

    Movable Thin Glass Elements in Façades

    Get PDF
    Façades play an important role in the control of energy flow and energy consumption in buildings as they represent the interface between the outdoor environment and the indoor occupied space. The option of regulating internal and external conditions acquires great relevance in new approaches to sustainable building solutions. Studies on climate adaptive façades show a very high potential for improved indoor environmental quality conditions and energy savings by moveable façades. A number of movable façades were realized in the past, but the use of thin glass with a thickness of 0.5 mm to 3 mm opens a brand-new field, that allows for playing with the geometry of the outer skin and the opportunity to make it adaptive by movement. Thin glass requires for curved surfaces in order to gain structural stiffness in static use. In kinetic façades the high flexibility of thin glass allows for new options for changes in size and position by bending of elements rather than implementing hinges in a system of foldable rigid panels. The geometry is based on the known theory of developable surfaces for keeping a low stress-level during movement. This allows for façades created from cold bent thin glass or curved laminated safety glasses produced by laminating of thin glass plies which provide better sealing, greater simplicity in construction and robustness and durability of moveable components which may be actuated autonomously. Some concepts based on the before mentioned theories were created to explain some principles and discuss their principles and applicability

    Thin glass as a tool for architectural design

    Get PDF
    Glass with a thickness of less than 2.0 mm can be defined as a thin glass or with a thickness of less than 0.5 mm even as ultra-light. Thin glass requires for curved surfaces in order to gain structural stiffness in static use. The geometry is based on the known theory of developable surfaces. Such Façades may therefore be created from cold bent or curved laminated thin glass layers. In the past semester a seminar with architectural students were held and three projects of this seminar are worth to be presented to the public for demonstration of possibilities for use of thin glass. The definition of a seminar project for students was a connection of a big housing area with the nearby stop of the local tram which is separated by a railway line. Two possibilities for the pedestrian are given to pass the railroad. The first one is a passage underground below the railroad and the second one is a bridge above the railway line. This paper contents a study of architectural design made by students. Two projects which will be presented in this paper focuses on the design of the entrance building of a passage underground and the third project is a design of a pedestrian bridge above the railroad. Beside the architectural design a structural analysis was done to support the design process such as with ranges of possible bending radii for the curved thin glass elements and to guarantee the feasibility of the desig

    CAN Radar: Sensing Physical Devices in CAN Networks based on Time Domain Reflectometry

    Full text link
    The presence of security vulnerabilities in automotive networks has already been shown by various publications in recent years. Due to the specification of the Controller Area Network (CAN) as a broadcast medium without security mechanisms, attackers are able to read transmitted messages without being noticed and to inject malicious messages. In order to detect potential attackers within a network or software system as early as possible, Intrusion Detection Systems (IDSs) are prevalent. Many approaches for vehicles are based on techniques which are able to detect deviations from specified CAN network behaviour regarding protocol or payload properties. However, it is challenging to detect attackers who secretly connect to CAN networks and do not actively participate in bus traffic. In this paper, we present an approach that is capable of successfully detecting unknown CAN devices and determining the distance (cable length) between the attacker device and our sensing unit based on Time Domain Reflectometry (TDR) technique. We evaluated our approach on a real vehicle network.Comment: Submitted to conferenc

    Single cell analysis in native tissue: Quantification of the retinoid content of hepatic stellate cells

    Get PDF
    Hepatic stellate cells (HSCs) are retinoid storing cells in the liver: The retinoid content of those cells changes depending on nutrition and stress level. There are also differences with regard to a HSC’s anatomical position in the liver. Up to now, retinoid levels were only accessible from bulk measurements of tissue homogenates or cell extracts. Unfortunately, they do not account for the intercellular variability. Herein, Raman spectroscopy relying on excitation by the minimally destructive wavelength 785 nm is introduced for the assessment of the retinoid state of single HSCs in freshly isolated, unprocessed murine liver lobes. A quantitative estimation of the cellular retinoid content is derived. Implications of the retinoid content on hepatic health state are reported. The Raman-based results are integrated with histological assessments of the tissue samples. This spectroscopic approach enables single cell analysis regarding an important cellular feature in unharmed tissue
    corecore