6 research outputs found

    Exploring the Potential of Mobile Laser Scanning to Quantify Forest Structural Complexity

    Get PDF
    Today, creating or maintaining forest structural complexity is a management paradigm in many countries due to the positive relationships between structural complexity and several forest functions and services. In this study, we tested whether the box-dimension (Db), a holistic and objective measure to describe the structural complexity of trees or forests, can be used to quantify the structural complexity of 14 European beech (Fagus sylvatica L.) dominated forest plots by means of mobile laser scanning (MLS). The goal of this study was to explore the potential of this approach for quantifying the effect of leaves (summer vs winter) and management (lately unmanaged vs managed) on forest structural complexity. The findings suggest that repeated measurements on the same site and at the same time yielded consistent results if the measuring scheme is standardized. The results also showed that standardized measurement protocols allowed quantifying differences in forest structural complexity due to season. The highest stand structural complexity was found in leaf-on condition during summer, with the complexity being significantly higher than in winter condition. Also, in case of our beech-dominated plots, managed forests were more complex in structure than formerly managed but now unmanaged forests. This study illustrates the potential of MLS for monitoring the changes in forest structural complexity and allows correcting stand structural information for seasonality

    Habitat openness and predator abundance determine predation risk of warningly colored longhorn beetles (Cerambycidae) in temperate forest

    Get PDF
    Organisms have evolved different defense mechanisms, such as crypsis and mimicry, to avoid detection and recognition by predators. A prominent example is Batesian mimicry, where palatable species mimic unpalatable or toxic ones, such as Clytini (Coleoptera: Cerambycidae) that mimic wasps. However, scientific evidence for the effectiveness of Batesian mimicry in Cerambycids in natural habitats is scarce. We investigated predation of warningly and nonwarningly colored Cerambycids by birds in a temperate forest using beetle dummies. Dummies mimicking Tetropium castaneum, Leptura aethiops, Clytus arietis, and Leptura quadrifasciata were exposed on standing and laying deadwood and monitored predation events by birds over one season. The 20 surveyed plots differed in their structural complexity and canopy openness due to different postdisturbance logging strategies. A total of 88 predation events on warningly colored beetle dummies and 89 predation events on nonwarningly colored beetle dummies did not reveal the difference in predation risk by birds. However, predation risk increased with canopy openness, bird abundance, and exposure time, which peaked in July. This suggests that environmental factors have a higher importance in determining predation risk of warningly and nonwarningly colored Cerambycidae than the actual coloration of the beetles. Our study showed that canopy openness might be important in determining the predation risk of beetles by birds regardless of beetles' warning coloration. Different forest management strategies that often modify canopy openness may thus alter predator-prey interactions

    Three-dimensional quantification of tree architecture from mobile laser scanning and geometry analysis

    Get PDF
    The structure and dynamics of a forest are defined by the architecture and growth patterns of its individual trees. In turn, tree architecture and growth result from the interplay between the genetic building plans and environmental factors. We set out to investigate whether (1) latitudinal adaptations of the crown shape occur due to characteristic solar elevation angles at a species’ origin, (2) architectural differences in trees are related to seed dispersal strategies, and (3) tree architecture relates to tree growth performance. We used mobile laser scanning (MLS) to scan 473 trees and generated three-dimensional data of each tree. Tree architectural complexity was then characterized by fractal analysis using the box-dimension approach along with a topological measure of the top heaviness of a tree. The tree species studied originated from various latitudinal ranges, but were grown in the same environmental settings in the arboretum. We found that trees originating from higher latitudes had significantly less top-heavy geometries than those from lower latitudes. Therefore, to a certain degree, the crown shape of tree species seems to be determined by their original habitat. We also found that tree species with wind-dispersed seeds had a higher structural complexity than those with animal-dispersed seeds (p < 0.001). Furthermore, tree architectural complexity was positively related to the growth performance of the trees (p < 0.001). We conclude that the use of 3D data from MLS in combination with geometrical analysis, including fractal analysis, is a promising tool to investigate tree architecture

    Simulation of silvicultural treatments based on real 3D forest data from mobile laser scanning point clouds

    No full text
    Forest management has a direct influence on the structure and stability of forests. In this study, we used the 3D data from mobile laser scanning in real forest stands dominated by European beech (Fagus sylvatica L.) to simulate different silvicultural treatments and assess their impact on the structural complexity and short-term economic return. For the structural assessment, we used the box-dimension (Db), a holistic measure of structural complexity in forest. The expected net revenues of the silvicultural treatments were used as a proxy for short-term economic gain. We simulated six different treatments in 19 different real-world forest stands. The results showed that each treatment had a negative impact on the structural complexity of the stands but with varying severity. The treatments with the smallest effect on stand structural complexity showed the highest net revenue, indicating no trade-offs if a forest owner strives for small stand structural changes and high economic return. The approach used here allows quantifying the structural and economic consequences of different treatments in forest stands prior to the actual application in the real world. This holds large potential for decision making according to the forest owner's objective.ISSN:2666-719
    corecore