2,271 research outputs found

    Overlap Fermions on a 20420^4 Lattice

    Get PDF
    We report results on hadron masses, fitting of the quenched chiral log, and quark masses from Neuberger's overlap fermion on a quenched 20420^4 lattice with lattice spacing a=0.15a = 0.15 fm. We used the improved gauge action which is shown to lower the density of small eigenvalues for H2H^2 as compared to the Wilson gauge action. This makes the calculation feasible on 64 nodes of CRAY-T3E. Also presented is the pion mass on a small volume (63×126^3 \times 12 with a Wilson gauge action at ÎČ=5.7\beta = 5.7). We find that for configurations that the topological charge Q≠0Q \ne 0, the pion mass tends to a constant and for configurations with trivial topology, it approaches zero possibly linearly with the quark mass.Comment: Lattice 2000 (Chiral Fermion), 4 pages, 4 figure

    An alternative to domain wall fermions

    Get PDF
    We define a sparse hermitian lattice Dirac matrix, HH, coupling 2n+12n+1 Dirac fermions. When 2n2n fermions are integrated out the induced action for the last fermion is a rational approximation to the hermitian overlap Dirac operator. We provide rigorous bounds on the condition number of HH and compare them to bounds for the higher dimensional Dirac operator of domain wall fermions. Our main conclusion is that overlap fermions should be taken seriously as a practical alternative to domain wall fermions in the context of numerical QCD.Comment: Revtex Latex, 26 pages, 1 figure, a few minor change

    Generalized Ginsparg-Wilson algebra and index theorem on the lattice

    Full text link
    Recent studies of the topological properties of a general class of lattice Dirac operators are reported. This is based on a specific algebraic realization of the Ginsparg-Wilson relation in the form Îł5(Îł5D)+(Îł5D)Îł5=2a2k+1(Îł5D)2k+2\gamma_{5}(\gamma_{5}D)+(\gamma_{5}D)\gamma_{5} = 2a^{2k+1}(\gamma_{5}D)^{2k+2} where kk stands for a non-negative integer. The choice k=0k=0 corresponds to the commonly discussed Ginsparg-Wilson relation and thus to the overlap operator. It is shown that local chiral anomaly and the instanton-related index of all these operators are identical. The locality of all these Dirac operators for vanishing gauge fields is proved on the basis of explicit construction, but the locality with dynamical gauge fields has not been established yet. We suggest that the Wilsonian effective action is essential to avoid infrared singularities encountered in general perturbative analyses.Comment: 11 pages. Talk given at APCTP-Nankai Joint Symposium on Lattice Statistics and Mathematical Physics, Tianjin, China, 8-11 October, 2001. To be published in the Proceedings and in Int. Jour. Mod. Phys.

    Noncompact chiral U(1) gauge theories on the lattice

    Get PDF
    A new, adiabatic phase choice is adopted for the overlap in the case of an infinite volume, noncompact abelian chiral gauge theory. This gauge choice obeys the same symmetries as the Brillouin-Wigner (BW) phase choice, and, in addition, produces a Wess-Zumino functional that is linear in the gauge variables on the lattice. As a result, there are no gauge violations on the trivial orbit in all theories, consistent and covariant anomalies are simply related and Berry's curvature now appears as a Schwinger term. The adiabatic phase choice can be further improved to produce a perfect phase choice, with a lattice Wess-Zumino functional that is just as simple as the one in continuum. When perturbative anomalies cancel, gauge invariance in the fermionic sector is fully restored. The lattice effective action describing an anomalous abelian gauge theory has an explicit form, close to one analyzed in the past in a perturbative continuum framework.Comment: 35 pages, one figure, plain TeX; minor typos corrected; to appear in PR

    Numerical simulation of dynamical gluinos: experience with a multi-bosonic algorithm and first results

    Get PDF
    We report on our experience with the two-step multi-bosonic algorithm in a large scale Monte Carlo simulation of the SU(2) Yang-Mills theory with dynamical gluinos. First results are described on the low lying spectrum of bound states, the string tension and the gluino condensate.Comment: LATTICE98(algorithms), latex using espcrc2.sty, 6 pages, 7 figure

    A Perturbative Study of a General Class of Lattice Dirac Operators

    Full text link
    A perturbative study of a general class of lattice Dirac operators is reported, which is based on an algebraic realization of the Ginsparg-Wilson relation in the form Îł5(Îł5D)+(Îł5D)Îł5=2a2k+1(Îł5D)2k+2\gamma_{5}(\gamma_{5}D)+(\gamma_{5}D)\gamma_{5} = 2a^{2k+1}(\gamma_{5}D)^{2k+2} where kk stands for a non-negative integer. The choice k=0k=0 corresponds to the commonly discussed Ginsparg-Wilson relation and thus to the overlap operator. We study one-loop fermion contributions to the self-energy of the gauge field, which are related to the fermion contributions to the one-loop ÎČ\beta function and to the Weyl anomaly. We first explicitly demonstrate that the Ward identity is satisfied by the self-energy tensor. By performing careful analyses, we then obtain the correct self-energy tensor free of infra-red divergences, as a general consideration of the Weyl anomaly indicates. This demonstrates that our general operators give correct chiral and Weyl anomalies. In general, however, the Wilsonian effective action, which is supposed to be free of infra-red complications, is expected to be essential in the analyses of our general class of Dirac operators for dynamical gauge field.Comment: 30 pages. Some of the misprints were corrected. Phys. Rev. D (in press

    General bounds on the Wilson-Dirac operator

    Get PDF
    Lower bounds on the magnitude of the spectrum of the Hermitian Wilson-Dirac operator H(m) have previously been derived for 0<m<2 when the lattice gauge field satisfies a certain smoothness condition. In this paper lower bounds are derived for 2p-2<m<2p for general p=1,2,...,d where d is the spacetime dimension. The bounds can alternatively be viewed as localisation bounds on the real spectrum of the usual Wilson-Dirac operator. They are needed for the rigorous evaluation of the classical continuum limit of the axial anomaly and index of the overlap Dirac operator at general values of m, and provide information on the topological phase structure of overlap fermions. They are also useful for understanding the instanton size-dependence of the real spectrum of the Wilson-Dirac operator in an instanton background.Comment: 26 pages, 2 figures. v3: Completely rewritten with new material and new title; to appear in Phys.Rev.

    Testing a Topology Conserving Gauge Action in QCD

    Full text link
    We study lattice QCD with a gauge action, which suppresses small plaquette values. Thus the MC history is confined to a single topological sector over a significant time, while other observables are decorrelated. This enables the cumulation of statistics with a specific topological charge, which is needed for simulations of QCD in the Ï”\epsilon-regime. The same action may also be useful for simulations with dynamical quarks. The update is performed with a local HMC algorithm.Comment: 3 pages, 3 figures, poster presented by S. Shcheredin at Lattice2004(theory

    Nonperturbative Gauge Fixing and Perturbation Theory

    Full text link
    We compare the gauge-fixing approach proposed by Jona-Lasinio and Parrinello, and by Zwanziger (JPLZ) with the standard Fadeev-Popov procedure, and demonstrate perturbative equality of gauge-invariant quantities, up to irrelevant terms induced by the cutoff. We also show how a set of local, renormalizable Feynman rules can be constructed for the JPLZ procedure.Comment: 9 pages, latex, version to appear in Phys. Rev.

    Domain wall fermion and CP symmetry breaking

    Get PDF
    We examine the CP properties of chiral gauge theory defined by a formulation of the domain wall fermion, where the light field variables qq and qˉ\bar q together with Pauli-Villars fields QQ and Qˉ\bar Q are utilized. It is shown that this domain wall representation in the infinite flavor limit N=∞N=\infty is valid only in the topologically trivial sector, and that the conflict among lattice chiral symmetry, strict locality and CP symmetry still persists for finite lattice spacing aa. The CP transformation generally sends one representation of lattice chiral gauge theory into another representation of lattice chiral gauge theory, resulting in the inevitable change of propagators. A modified form of lattice CP transformation motivated by the domain wall fermion, which keeps the chiral action in terms of the Ginsparg-Wilson fermion invariant, is analyzed in detail; this provides an alternative way to understand the breaking of CP symmetry at least in the topologically trivial sector. We note that the conflict with CP symmetry could be regarded as a topological obstruction. We also discuss the issues related to the definition of Majorana fermions in connection with the supersymmetric Wess-Zumino model on the lattice.Comment: 33 pages. Note added and a new reference were added. Phys. Rev.D (in press
    • 

    corecore