15 research outputs found

    Polydiacetylenic nanofibers as new siRNA vehicles for in vitro and in vivo delivery

    Get PDF
    Polydiacetylenic nanofibers (PDA-Nfs) obtained by photopolymerization of surfactant 1 were optimized for intracellular delivery of small interfering RNAs (siRNAs). PDA-Nfs/siRNA complexes efficiently silenced the oncogene Lim-1 in the renal cancer cells 786-O in vitro. Intraperitoneal injection of PDA-Nfs/siLim1 downregulated Lim-1 in subcutaneous tumor xenografts obtained with 786-O cells in nude mice. Thus, PDA-Nfs represent an innovative system for in vivo delivery of siRNAs

    Photopolymerized micelles of diacetylene amphiphile: physical characterization and cell delivery properties:

    Get PDF
    A series of polydiacetylene (PDA) - based micelles were prepared from diacetylenic surfactant bearing polyethylene glycol, by increasing UV-irradiation times. These polymeric lipid micelles were analyzed by physicochemical methods, electron microscopy and NMR analysis. Cellular delivery of fluorescent dye suggests that adjusting the polymerization state is vital to reach the full in vitro potential of PDA-based delivery system

    Inhibition of dengue virus infection by mannoside glycolipid conjugates

    Get PDF
    International audienceDengue virus (DENV), a mosquito-borne flavivirus, causes severe and potentially fatal symptoms in millions of infected individuals each year. Although dengue fever represents a major global public health problem, the vaccines or antiviral drugs proposed so far have not shown sufficient efficacy and safety, calling for new antiviral developments. Here we have shown that a mannoside glycolipid conjugate (MGC) bearing a trimannose head with a saturated lipid chain inhibited DENV productive infection. It showed remarkable cell promiscuity, being active in human skin dendritic cells, hepatoma cell lines and Vero cells, and was active against all four DENV serotypes, with an IC 50 in the low micromolar range. Time-of-addition experiments and structure-activity analyses revealed the importance of the lipid chain to interfere with an early viral infection step. This, together with a correlation between antiviral activity and membrane polarization by the lipid moiety indicated that the in-hibitor functions by blocking viral envelope fusion with the endosome membrane. These finding establish MGCs as a novel class of antivirals against the DENV

    Managing formalization to increase global team effectiveness and meaningfulness of work in multinational organizations

    Get PDF
    Global teams may help to integrate across locations, and yet, with formalized rules and procedures, responsiveness to those locations’ effectiveness, and the team members’ experiences of work as meaningful may suffer. We employ a mixed-methods approach to understand how the level and content of formalization can be managed to resolve these tensions in multinationals. In a sample of global teams from a large mining and resources organization operating across 44 countries, interviews, observations, and a quantitative 2-wave survey revealed a great deal of variability between teams in how formalization processes were enacted. Only those formalization processes that promoted knowledge sharing were instrumental in improving team effectiveness. Implementing rules and procedures in the set-up of the teams and projects, rather than during interactions, and utilizing protocols to help establish the global team as a source of identity increased this knowledge sharing. Finally, we found members’ personal need for structure moderated the effect of team formalization on how meaningful individuals found their work within the team. These findings have significant implications for theory and practice in multinational organizations

    Cationic Photopolymerized Polydiacetylenic (PDA) Micelles for siRNA Delivery

    No full text
    Polymerized micelles obtained by photopolymerization of diacetylenic surfactants and which are forming polydiacetylenic systems (PDAs) have recently gained interest as stabilized monodisperse systems showing potential for the delivery of hydrophobic drugs as well as of larger biomolecules such as nucleic acids. Introduction of pH-sensitive histidine groups at the surface of the micellar PDA systems allows for efficient delivery of siRNA resulting in specific gene silencing through RNA interference. Here, we describe the detailed experimental procedure for the reproducible preparation of these photopolymerized PDA micelles. We provide physicochemical characterization of these nanomaterials by dynamic light scattering, transmission electron microscopy, and diffusion ordered spectroscopy. Moreover, we describe standardized biological tests to evaluate the silencing efficiency by the use of a cell line constitutively expressing the luciferase reporter gene

    Design and evaluation of ionizable peptide amphiphiles for siRNA delivery

    No full text
    Small interfering RNAs (siRNAs) can down-regulate the expression of a target mRNA molecule in a sequence-specific manner, making them an attractive new class of drugs with broad potential for the treatment of diverse human diseases. Here, we report the synthesis of a series of cationic amphiphiles which were obtained by the coupling of amino acids and dipeptides onto a lipidic double chain. The new amphiphiles presenting a peptidic motif on a short hydrophilic spacer group were evaluated for selective gene silencing through RNA interference. Our results show that tryptophan residues boost siRNA delivery in an unexpected manner. The silencing experiments performed with very low concentrations of siRNA showed that the best formulations could induce significant death of tumor cells after silencing of polo-like kinase 1 which is implicated in cell cycle progression. In addition, these Trp containing peptide amphiphiles were highly efficient siRNA delivery vectors even in presence of competing serum proteins

    A multifunctional nanocomplex for enhanced cell uptake, endosomal escape and improved cancer therapeutic effect

    No full text
    Aim: To evaluate the chemotherapeutic potential of a novel multifunctional nanocomposite encapsulating both porous silicon (PSi) and gold (Au) nanoparticles in a polymeric nanocomplex. Materials & methods: The nanocomposite was physicochemically characterized and evaluated in vitro for biocompatibility, cellular internalization, endosomolytic properties, cytoplasmatic drug delivery and chemotherapeutic efficacy. Results: The nanocomposites were successfully produced and exhibited adequate physicochemical properties and superior in vitro cyto- and hemocompatibilities. The encapsulation of PSi nanoparticles in the nanocomplexes significantly enhanced their cellular internalization and enabled their endosomal escape, resulting in the efficient cytoplasmic delivery of these nanosystems. Sorafenibloaded nanocomposites showed a potent in vitro antiproliferative effect on MDA-MB-231 breast cancer cells. Conclusion: The multifunctional nanocomposite herein presented exhibits great potential as a chemotherapeutic nanoplatform

    Presentare e comunicare le statistiche: principi, componenti e valutazione della loro qualitĂ 

    No full text
    Inhibition of excessive Toll-like receptor 4 (TLR4) signaling is a therapeutic approach pursued for many inflammatory diseases. We report that Mannoside Glycolipid Conjugates (MGCs) selectively blocked TLR4-mediated activation of human monocytes and monocyte-derived dendritic cells (DCs) by lipopolysaccharide (LPS). They potently suppressed pro-inflammatory cytokine secretion and maturation of DCs exposed to LPS, leading to impaired T cell stimulation. MGCs did not interfere with LPS and could act in a delayed manner, hours after LPS stimulation. Their inhibitory action required both the sugar heads and the lipid chain, although the nature of the sugar and the structure of the lipid tail could be modified. They blocked early signaling events at the cell membrane, enhanced internalization of CD14 receptors, and prevented colocalization of CD14 and TLR4, thereby abolishing NF-ÎşB nuclear translocation. When the best lead conjugate was tested in a mouse model of LPS-induced acute lung inflammation, it displayed an anti-inflammatory action by suppressing the recruitment of neutrophils. Thus, MGCs could serve as promising leads for the development of selective TLR4 antagonistic agents for inflammatory diseases

    Reversal of viral and epigenetic HLA class I repression in Merkel cell carcinoma

    No full text
    Cancers avoid immune surveillance through an array of mechanisms, including perturbation of HLA class I antigen presentation. Merkel cell carcinoma (MCC) is an aggressive, HLA-I–low, neuroendocrine carcinoma of the skin often caused by the Merkel cell polyomavirus (MCPyV). Through the characterization of 11 newly generated MCC patient-derived cell lines, we identified transcriptional suppression of several class I antigen presentation genes. To systematically identify regulators of HLA-I loss in MCC, we performed parallel, genome-scale, gain- and loss-of-function screens in a patient-derived MCPyV-positive cell line and identified MYCL and the non-canonical Polycomb repressive complex 1.1 (PRC1.1) as HLA-I repressors. We observed physical interaction of MYCL with the MCPyV small T viral antigen, supporting a mechanism of virally mediated HLA-I suppression. We further identify the PRC1.1 component USP7 as a pharmacologic target to restore HLA-I expression in MCC
    corecore