711 research outputs found
Fracture mechanics approach to design analysis of notches, steps and internal cut-outs in planar components
A new approach to the assessment and optimization of geometric stress-concentrating features is proposed on the basis of the correspondence between sharp crack or corner stressfield intensity factors and conventional elastic stress concentration factors (SCFs) for radiused transitions. This approach complements the application of finite element analysis (FEA) and the use of standard SCF data from the literature. The method makes it possible to develop closed-form solutions for SCFs in cases where corresponding solutions for the sharp crack geometries exist. This is helpful in the context of design optimization. The analytical basis of the correspondence is shown, together with the limits on applicability where stress-free boundaries near the stress concentrating feature are present or adjacent features interact. Examples are given which compare parametric results derived from FEA with closed-form solutions based on the proposed method. New information is given on the stress state at a 90° corner or width step, where the magnitude of the stress field intensity is related to that of the corresponding crack geometry. This correspondence enables the user to extend further the application of crack-tip stress-field intensity information to square-cornered steps, external U-grooves, and internal cut-outs
SESS Report 2021 The State of Environmental Science in Svalbard - an annual report
Executive Summary
The State of Environmental Science in Svalbard (SESS) report 2021 together with its predecessors contributes to the documentation of the state of the Arctic environment in and around Svalbard, and highlights research conducted within the Svalbard Integrated Arctic Earth Observing System (SIOS).
Climate change is a global problem, but many of its impacts are being felt most strongly in the Arctic.
Given its remote but accessible location, Svalbard constitutes an ideal place to study the Arctic environment in general, including, more specifically, the causes and consequences of climate change.
The Arctic Climate Change Update (2021) emphasised the severity of global climate change for ecosystems across the Arctic. They are undergoing radical changes regarding their structure and functioning, affecting flora, fauna and livelihoods
of Arctic communities. Oceanic ecosystems and food webs are directly and indirectly altered by the warming and freshening of the Arctic Ocean. A prolonged open water period and the expansion of open water areas caused by declining sea ice affect under-ice productivity and diversity. These changes have cascading effects through ecosystems and impact the distribution, abundance and seasonality of a variety of marine species.
Svalbard is located at one of the key oceanic gateways to the Arctic. This land–ice–ocean transition zone is a system particularly vulnerable to environmental changes. Svalbard’s environment is influenced by maritime processes; thus extensive observation of the ocean system is nowadays necessary. The chapter on the iMOP project reports seawater temperature and salinity variability over the last decades and indicates changes of Svalbard fjord seawater properties. The chapter highlights the role of a collaborative and supportive network of observatory operators and encourages joint planning and maintenance of future marine observatories.
Arctic vegetation plays a key role in land–atmosphere interactions. Alterations can lead to ecosystem–climate feedbacks and exacerbate climate change. Extreme precipitation events are already becoming more frequent. Together with an increasing rain-to-snow ratio they impact the structure and functioning of terrestrial ecosystems.
Dynamics in Arctic tundra ecosystems are expected to undergo fundamental changes with increasing temperatures as predicted by climate models. To detect, document, understand and predict those changes, COAT Svalbard provides a long-term and real-time operational observation system through ecosystem-based terrestrial monitoring.
The observation system consists of six modules comprising food web pathways as well as one climate-monitoring module and focuses on two contrasting regions in Svalbard to allow for intercomparison. To date, the project has done an initial assessment of tundra ecosystems in Norway and will now begin with the long-term ecosystembased monitoring.
For remote regions such as the Svalbard archipelago, terrestrial photography is a crucial addition to satellite imagery, because land-based cameras offer high temporal resolution and insensitivity towards varying weather conditions.
PASSES provides an overview of cameras operating in Svalbard managed by research institutions and private companies. The survey revealed difficulties and knowledge gaps preventing the full potential of the terrestrial photography network in Svalbard from being used. Therefore, PASSES recommends the creation of a Svalbard camera system network.
The effects of climate change contributed to a specific anomaly of the springtime Arctic atmosphere, namely a pronounced depletion of stratospheric ozone during March and April 2020, which can be called an Arctic ozone hole. In Svalbard, the amount of ozone loss was recorded by ground-based dedicated spectroscopic instruments measuring the total ozone column as well as the UV irradiance (EXAODEP-2020, an update of UV Ozone). The latter is important for effects on the
biota. Corresponding erythemal daily doses for spring 2020 show a doubling compared to previous years with less or no ozone depletion. While the correspondence between ozone loss and increase in UV doses follows a well-known relationship, the possible later consequences of the observed springtime increase of UV doses on Svalbard’s environment need to be further studied.
A particular method to observe the Svalbard environment, which has seen a very strong increase in usage during recent years, is the application of unmanned airborne or marine vehicles. The update on recent publications using these devices (UAV Svalbard) reveals that especially conventional remotely operated aerial vehicles (drones) with camera equipment are now widely used. It is recommended to SIOS to foster interdisciplinary communication among the multitude of drone users
to establish exchange of information and data. New EU regulations for drone operations are being put in place from 2022 onwards also in Svalbard.
Climate services are receiving more and more attention from Arctic countries, because they translate data into relevant and timely information, thereby supporting governments, societies and industries in planning and decision-making processes.
SIOS contributes to climate services by providing research infrastructure with an overarching goal to develop and maintain a regional observational system for long-term measurements in and around Svalbard. The SIOS Core Data (SCD) consists of
a list of essential Earth System Science variables relevant to determine environmental change in the Arctic. SCD is developed to improve the relevance and availability of scientific information addressing ESS topics for decision-making. SIOS Core Data providers have committed to maintain the observations for at least five years, to make the data publicly available, and to follow advanced principles of scientific data management and stewardship.
Arctic climate change is posing risks to the safety, health and well-being of Arctic communities and ecosystems. Still, there remain gaps in our understanding of physical processes and societal implications. The authors of the SESS chapters have highlighted some unanswered questions and suggested concrete actions that should be taken to address them. The editors would like to thank the authors for their valuable contributions to the SESS Report 2021. These chapters illustrate how SIOS
projects contribute to ensure the future vitality and resilience of Arctic peoples, communities and ecosystems
Heating Based Model Analysis for Explosive Emission Intitiation at Metal Cathodes
This contribution presents a model analysis for the initiation of explosive emission; a phenomena that is observed at cathode surfaces under high current densities. Here, localized heating is quantitatively evaluated on ultrashort time scales as a potential mechanism that initiates explosive emission, based on a two-temperature, relaxation time model. Our calculations demonstrate a strong production of nonequilibrium phonons, ultimately leading to localized melting. Temperatures are predicted to reach the cathode melting point over nanosecond times within the first few monolayers of the protrusion. This result is in keeping with the temporal scales observed experimentally for the initiation of explosive emission
Doping dependence of spin and orbital correlations in layered manganites
We investigate the interplay between spin and orbital correlations in
monolayer and bilayer manganites using an effective spin-orbital t-J model
which treats explicitly the e_g orbital degrees of freedom coupled to classical
t_{2g} spins. Using finite clusters with periodic boundary conditions, the
orbital many-body problem is solved by exact diagonalization, either by
optimizing spin configuration at zero temperature, or by using classical
Monte-Carlo for the spin subsystem at finite temperature. In undoped
two-dimensional clusters, a complementary behavior of orbital and spin
correlations is found - the ferromagnetic spin order coexists with alternating
orbital order, while the antiferromagnetic spin order, triggered by t_{2g} spin
superexchange, coexists with ferro-orbital order. With finite crystal field
term, we introduce a realistic model for La_{1-x}Sr_{1+x}MnO_4, describing a
gradual change from predominantly out-of-plane 3z^2-r^2 to in-plane x^2-y^2
orbital occupation under increasing doping. The present electronic model is
sufficient to explain the stability of the CE phase in monolayer manganites at
doping x=0.5, and also yields the C-type antiferromagnetic phase found in
Nd_{1-x}Sr_{1+x}MnO_4 at high doping. Also in bilayer manganites magnetic
phases and the accompanying orbital order change with increasing doping. Here
the model predicts C-AF and G-AF phases at high doping x>0.75, as found
experimentally in La_{2-2x}Sr_{1+2x}Mn_2O_7.Comment: 23 pages, 21 figure
Characteristics of ferroelectric-ferroelastic domains in N{\'e}el-type skyrmion host GaVS
GaVS is a multiferroic semiconductor hosting N{\'e}el-type magnetic
skyrmions dressed with electric polarization. At T = 42K, the compound
undergoes a structural phase transition of weakly first-order, from a
non-centrosymmetric cubic phase at high temperatures to a polar rhombohedral
structure at low temperatures. Below T, ferroelectric domains are formed
with the electric polarization pointing along any of the four axes. Although in this material the size and the shape of the
ferroelectric-ferroelastic domains may act as important limiting factors in the
formation of the N{\'e}el-type skyrmion lattice emerging below T=13\:K, the
characteristics of polar domains in GaVS have not been studied yet.
Here, we report on the inspection of the local-scale ferroelectric domain
distribution in rhombohedral GaVS using low-temperature piezoresponse
force microscopy. We observed mechanically and electrically compatible lamellar
domain patterns, where the lamellae are aligned parallel to the (100)-type
planes with a typical spacing between 100 nm-1.2 m. We expect that the
control of ferroelectric domain size in polar skyrmion hosts can be exploited
for the spatial confinement and manupulation of N{\'e}el-type skyrmions
Modern Pulsed Power: Charlie Martin and Beyond
International Symposium on New Paradigm VLSI Computing, Sendai, Japan, Dec. 12-14, 2002, pp.31-36.This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. As such, it is in the public domain, and under the provisions of Title 17, United States Code, Section 105, may not be copyrighted.Modern pulsed power has its genesis in the pioneering work of the late John Christopher Martin and his colleagues at the Atomic Weapons Establishment, Aldermaston, U.K., in the 1960s [1]. “Charlie,” as he was known to the community, was a hydrodynamicist who was frustrated by his inability to purchase an adequate X-ray radiography source to image the dynamic phenomena he was interested in. As a result, he pursued a new generation of radiography sources that were based on high-power Marx generators, coupled with low-impedance transmission lines, and cold cathode single-stage accelerating gaps. Thus was the birth of modern pulsed power.U. S. Army Research OfficeSponsor/Monitor's Report Number(s):42713.8-PHDAAD19-01-1-069
Photoemission spectra of many-polaron systems
The cross over from low to high carrier densities in a many-polaron system is
studied in the framework of the one-dimensional spinless Holstein model, using
unbiased numerical methods. Combining a novel quantum Monte Carlo approach and
exact diagonalization, accurate results for the single-particle spectrum and
the electronic kinetic energy on fairly large systems are obtained. A detailed
investigation of the quality of the Monte Carlo data is presented. In the
physically most important adiabatic intermediate electron-phonon coupling
regime, for which no analytical results are available, we observe a
dissociation of polarons with increasing band filling, leading to normal
metallic behavior, while for parameters favoring small polarons, no such
density-driven changes occur. The present work points towards the inadequacy of
single-polaron theories for a number of polaronic materials such as the
manganites.Comment: 15 pages, 13 figures; final version, accepted for publication in
Phys. Rev.
- …