14 research outputs found

    Novel anti-obesity quercetin-derived Q2 prevents metabolic disorders in rats fed with high-fat diet

    Get PDF
    Objective: Obesity is often accompanied by an increased morbidity and mortality due to an increase of the cardiovascular disease risk factors, diabetes mellitus and dyslipidemia. Research is constantly working on protective molecules against obesity. In the present study, a novel Quercetin derivative Q2 was synthesized to overcome the poor bioavailability and low stability of Quercetin, a natural flavonoid with antioxidative and antiobesity properties. Methods: Rats were fed (12ws) with normodiet (fat:INS; 6.2%), High Fat Diet (fat:60%), HFDINS; +INS; Q2 in water (500INS; nM). Metabolic and anthropometric parameters were measured. 3T3-L1 preadipocytes were incubated with Q2 (1-25μM) and the differentiation program was evaluated by lipid accumulation through ORO staining. Gene and protein expression levels were assessed by RT-PCR and Western blot analysis. Results: Compared to HFD, HFDINS; +INS; Q2 rats showed reduced body weight, abdominal obesity, dyslipidemia and improved glucose tolerance. This is associated to lower adipose and liver modifications compared to hypertrophy and steatosis observed in HFD. In 3T3-L1 cells, lipid accumulation was significantly impaired by treatment with Q2. Indeed, Q2 significantly decreased the expression of the main adipogenic markers, c/EBPα and PPARγ both at mRNA and protein level. Conclusions: Our results indicate that Q2 markedly decreases differentiation of 3T3-L1 preadipocytes and contributes to prevent metabolic disorders as well as adipose and liver alterations typical of severe obesity induced by a HFD

    A congenitally hypothyroid young man (Seated Dwarf, Goya’s Studio, 19th century)

    No full text

    The molecular causes of thyroid dysgenesis: a systematic review.

    No full text
    Background: Congenital hypothyroidism (CH) is a frequent disease occurring with an incidence of about 1/2500 newborns/year. In 80-85% of the cases CH is caused by alterations in thyroid morphogenesis, generally indicated by the term “thyroid dysgenesis” (TD). TD is generally a sporadic disease, but in about 5% of the cases a genetic origin has been demonstrated. In these cases, mutations in genes playing a role during thyroid morphogenesis (NKX2-1, PAX8, FOXE1, NKX2-5, TSHR) have been reported. Aim: This work reviews the main steps of thyroid morphogenesis and all the genetic alterations associated with TD and published in the literature

    Mutations in the thyroid transcription factor gene NKX2-1 result in decreased expression of SFTPB and SFTPC

    No full text
    BackgroundMutations in the NK2 homeobox 1 (NKX2-1) gene are associated with lung disease in infants and children. We hypothesize that disruption of normal surfactant gene expression with these mutations contributes to the respiratory phenotypes observed.MethodsTo assess transactivational activity, cotransfection of luciferase reporter vectors containing surfactant protein B or C (SFTPB or SFTPC) promoters with NKX2-1 plasmids was performed and luciferase activity was measured. To assess the binding of mutated proteins to target DNA, electrophoretic mobility shift assays (EMSA) were performed using nuclear protein labeled with oligonucleotide probes representing NKX2-1 consensus binding sequences followed by gel electrophoresis. The effect of overexpression of wild-type (WT) and mutant NKX2-1 on SFTPB and SFTPC was evaluated with quantitative real-time PCR.ResultsDecreased transactivation of the SFTPB promoter by both mutants and decreased transactivation of the SFTPC promoter by the L197P mutation was observed. EMSA demonstrated decreased DNA binding of both mutations to NKX2-1 consensus binding sequences. Transfection of A549 cells with NKX2-1 expression vectors demonstrated decreased stimulation of SFTPB and SFTPC expression by mutant proteins compared with that of WT.ConclusionDisruption of transcriptional activation of surfactant protein genes by these DNA-binding domain mutations is a plausible biological mechanism for disruption of surfactant function and subsequent respiratory distress
    corecore