2,256 research outputs found

    Wang-Landau sampling in three-dimensional polymers

    Full text link
    Monte Carlo simulations using Wang-Landau sampling are performed to study three-dimensional chains of homopolymers on a lattice. We confirm the accuracy of the method by calculating the thermodynamic properties of this system. Our results are in good agreement with those obtained using Metropolis importance sampling. This algorithm enables one to accurately simulate the usually hardly accessible low-temperature regions since it determines the density of states in a single simulation.Comment: 5 pages, 9 figures arch-ive/Brazilian Journal of Physic

    Model to predict shrinkage and ejection forces of injection moulded tubular parts of short glass fiber reinforced thermoplastics

    Get PDF
    This work presents a model to predict shrinkage and ejection forces for glass fiber reinforced thermoplastics of tubular geometry. This mathematical model was based in Jansen’s Model to predict shrinkage and residual stresses in fiber reinforced injection molded products and Pontes’s Model to predict ejection forces for tubular parts of pure PP. The model used the modified classical laminate theory applied to injection moulding and it uses the fiber orientation state, temperature and pressure field as input and which predicts the shrinkage and ejection forces. The fiber orientation state was determined experimentally and the temperature and pressure fields were obtained by MOLDFLOW simulations. The model to predict ejection forces considers also the fiber orientation state, friction coefficient between steel and polymer, elastic modulus of polymer, both in the ejection temperature and diametrical shrinkage. The model is validated by experimental results

    Assessment of the shrinkage and ejection forces of reinforced polypropylene based on nanoclays and short glass fibre

    Get PDF
    In this study the influence of nanoclay and glass fibre in the shrinkage and ejection forces in polypropylene matrix in tubular parts moulded by injection moulding were analysed. An instrumented mould was used to measure the part surface temperature and ejection forces in tubular parts. The materials used were a polypropylene homopolymer Domolen 1100L nanoclay for polyolefin nanocomposites P-802 Nanomax in percentages of 2%, 6% and 10% and a polypropylene homopolymer with content of 10% of glass fibre Domolen P1-013-V10-N and 30% of glass fibre Domolen P1-102-V30-N with 2% of nanoclay. The shrinkage and ejection forces were analysed. The results show that the incorporation of nanoclays decreases the shrinkage and ejection forces whereas glass fibre decreases the shrinkage and increase ejection forces due to the increase of the elastic modulus. The nanoclays decrease the ejection force when compared with glass fibre and pure PP. The effects of nanoclays are less pronounced than those of glass fibre. The effect of the mould temperatures on the ejection forces in the mouldings produced with the mentioned materials were also analysed. The ejection force decreases with the increase of the temperature of the mould

    Complete high-precision entropic sampling

    Full text link
    Monte Carlo simulations using entropic sampling to estimate the number of configurations of a given energy are a valuable alternative to traditional methods. We introduce {\it tomographic} entropic sampling, a scheme which uses multiple studies, starting from different regions of configuration space, to yield precise estimates of the number of configurations over the {\it full range} of energies, {\it without} dividing the latter into subsets or windows. Applied to the Ising model on the square lattice, the method yields the critical temperature to an accuracy of about 0.01%, and critical exponents to 1% or better. Predictions for systems sizes L=10 - 160, for the temperature of the specific heat maximum, and of the specific heat at the critical temperature, are in very close agreement with exact results. For the Ising model on the simple cubic lattice the critical temperature is given to within 0.003% of the best available estimate; the exponent ratios β/ν\beta/\nu and γ/ν\gamma/\nu are given to within about 0.4% and 1%, respectively, of the literature values. In both two and three dimensions, results for the {\it antiferromagnetic} critical point are fully consistent with those of the ferromagnetic transition. Application to the lattice gas with nearest-neighbor exclusion on the square lattice again yields the critical chemical potential and exponent ratios β/ν\beta/\nu and γ/ν\gamma/\nu to good precision.Comment: For a version with figures go to http://www.fisica.ufmg.br/~dickman/transfers/preprints/entsamp2.pd
    • …
    corecore