10,688 research outputs found
On Dirac-like Monopoles in a Lorentz- and CPT-violating Electrodynamics
We study magnetic monopoles in a Lorentz- and CPT-odd electrodynamical
framework in (3+1) dimensions. This is the standard Maxwell model extended by
means of a Chern-Simons-like term, (
constant), which respects gauge invariance but violates both Lorentz and CPT
symmetries (as a consequence, duality is also lost). Our main interest concerns
the analysis of the model in the presence of Dirac monopoles, so that the
Bianchi identity no longer holds, which naively yields the non-conservation of
electric charge. Since gauge symmetry is respected, the issue of charge
conservation is more involved. Actually, the inconsistency may be circumvented,
if we assume that the appearance of a monopole induces an extra electric
current. The reduction of the model to (2+1) dimensions in the presence of both
the magnetic sources and Lorentz-violating terms is presented. There, a
quantization condition involving the scalar remnant of , say, the mass
parameter, is obtained. We also point out that the breaking of duality may be
associated with an asymmetry between electric and magnetic sources in this
background, so that the electromagnetic force experienced by a magnetic pole is
supplemented by an extra term proportional to , whenever compared to the
one acting on an electric charge.Comment: 10 pages, no figures, typed in te
Riemann-Cartan Space-times of G\"odel Type
A class of Riemann-Cartan G\"odel-type space-times are examined in the light
of the equivalence problem techniques. The conditions for local space-time
homogeneity are derived, generalizing previous works on Riemannian G\"odel-type
space-times. The equivalence of Riemann-Cartan G\"odel-type space-times of this
class is studied. It is shown that they admit a five-dimensional group of
affine-isometries and are characterized by three essential parameters : identical triads () correspond to locally
equivalent manifolds. The algebraic types of the irreducible parts of the
curvature and torsion tensors are also presented.Comment: 24 pages, LaTeX fil
Theory of Spin Fluctuations in Striped Phases of Doped Antiferromagnetic Cuprates
We study the properties of generalized striped phases of doped cuprate planar
quantum antiferromagnets. We invoke an effective, spatially anisotropic,
non-linear sigma model in two space dimensions. Our theoretical predictions are
in quantitative agreement with recent experiments in La_{2-x}Sr_xCuO_4 with . We focus on (i) the magnetic correlation length, (ii) the
staggered magnetization at and (iii) the N\'eel temperature, as functions
of doping, using parameters determined previously and independently for this
system. These results support the proposal that the low doping
(antiferromagnetic) phase of the cuprates has a striped configuration.Comment: 4 pages, Revtex. To appear in the Proceedings of the International
Conference "Stripes, Lattice Instabilities and High Tc Superconductivity",
(Rome, Dec. 1996
Graphene as an electronic membrane
Experiments are finally revealing intricate facts about graphene which go
beyond the ideal picture of relativistic Dirac fermions in pristine two
dimensional (2D) space, two years after its first isolation. While observations
of rippling added another dimension to the richness of the physics of graphene,
scanning single electron transistor images displayed prevalent charge
inhomogeneity. The importance of understanding these non-ideal aspects cannot
be overstated both from the fundamental research interest since graphene is a
unique arena for their interplay, and from the device applications interest
since the quality control is a key to applications. We investigate the membrane
aspect of graphene and its impact on the electronic properties. We show that
curvature generates spatially varying electrochemical potential. Further we
show that the charge inhomogeneity in turn stabilizes ripple formation.Comment: 6 pages, 11 figures. Updated version with new results about the
re-hybridization of the electronic orbitals due to rippling of the graphene
sheet. The re-hybridization adds the next-to-nearest neighbor hopping effect
discussed in the previous version. New reference to recent STM experiments
that give support to our theor
Magnetic-field and chemical-potential effects on the low-energy separation
We show that in the presence of a magnetic field the usual low-energy
separation of the Hubbard chain is replaced by a ``'' and ``''
separation. Here and refer to small-momentum and low-energy independent
excitation modes which couple both to charge and spin. Importantly, we find the
exact generators of these excitations both in the electronic and pseudoparticle
basis. In the limit of zero magnetic field these generators become the usual
charge and spin fluctuation operators. The and elementary excitations
are associated with the and pseudoparticles, respectively. We also
study the separate pseudoparticle left and right conservation laws. In the
presence of the magnetic field the small-momentum and low-energy excitations
can be bosonized. However, the suitable bosonization corresponds to the and
pseudoparticle modes and not to the usual charge and spin fluctuations. We
evaluate exactly the commutator between the electronic-density operators. Its
spin-dependent factor is in general non diagonal and depends on the
interaction. The associate bosonic commutation relations characterize the
present unconventional low-energy separation.Comment: 29 pages, latex, submitted to Phys. Rev.
Energy and angular momentum of the gravitational field in the teleparallel geometry
The Hamiltonian formulation of the teleparallel equivalent of general
relativity is considered. Definitions of energy, momentum and angular momentum
of the gravitational field arise from the integral form of the constraint
equations of the theory. In particular, the gravitational energy-momentum is
given by the integral of scalar densities over a three-dimensional spacelike
hypersurface. The definition for the gravitational energy is investigated in
the context of the Kerr black hole. In the evaluation of the energy contained
within the external event horizon of the Kerr black hole we obtain a value
strikingly close to the irreducible mass of the latter. The gravitational
angular momentum is evaluated for the gravitational field of a thin, slowly
rotating mass shell.Comment: 33 pages, Latex file, 1 figure, to appear in the Phys. Rev.
Hamiltonian symplectic embedding of the massive noncommutative U(1) Theory
We show that the massive noncommutative U(1) theory is embedded in a gauge
theory using an alternative systematic way, which is based on the symplectic
framework. The embedded Hamiltonian density is obtained after a finite number
of steps in the iterative symplectic process, oppositely to the result proposed
using the BFFT formalism. This alternative formalism of embedding shows how to
get a set of dynamically equivalent embedded Hamiltonian densities.Comment: 16 pages, no figures, revtex4, corrected version, references
additione
Operatorial quantization of Born-Infeld Skyrmion model and hidden symmetries
The SU(2) collective coordinates expansion of the Born-Infeld\break Skyrmion
Lagrangian is performed. The classical Hamiltonian is computed from this
special Lagrangian in approximative way: it is derived from the expansion of
this non-polynomial Lagrangian up to second-order variable in the collective
coordinates. This second-class constrained model is quantized by Dirac
Hamiltonian method and symplectic formalism. Although it is not expected to
find symmetries on second-class systems, a hidden symmetry is disclosed by
formulating the Born-Infeld Skyrmion %model as a gauge theory. To this end we
developed a new constraint conversion technique based on the symplectic
formalism. Finally, a discussion on the role played by the hidden symmetry on
the computation of the energy spectrum is presented.Comment: A new version of hep-th/9901133. To appear in JP
- …