190 research outputs found

    Cinnarizinium picrate

    Get PDF
    In the title salt {systematic name: 4-diphenyl­methyl-1-[(E)-3-phenyl­prop-2-en-1-yl]piperazin-1-ium 2,4,6-trinitro­pheno­late), C26H29N2 +·C6H2N3O7 −, the cinnarizinium cation is protonated at the piperazine N atom connected to the styrenylmethyl group; the piperazine ring adopts a distorted chair conformaiton. In the crystal, bifurcated N—H⋯(O,O) hydrogen bonds link the components into two-ion aggregates

    Generic CBTS: Correlation based Transformation Strategy for Privacy Preserving Data Mining

    Get PDF
    Mining useful knowledge from corpus of data has become an important application in many fields. Data Mining algorithms like Clustering, Classification work on this data and provide crisp information for analysis. As these data are available through various channels into public domain, privacy for the owners of the data is increasing need. Though privacy can be provided by hiding sensitive data, it will affect the Data Mining algorithms in knowledge extraction, so an effective mechanism is required to provide privacy to the data and at the same time without affecting the Data Mining results. Privacy concern is a primary hindrance for quality data analysis. Data mining algorithms on the contrary focus on the mathematical nature than on the private nature of the information. Therefore instead of removing or encrypting sensitive data, we propose transformation strategies that retain the statistical, semantic and heuristic nature of the data while masking the sensitive information. The proposed Correlation Based Transformation Strategy (CBTS) combines Correlation Analysis in tandem with data transformation techniques such as Singular Value Decomposition (SVD), Principal Component Analysis (PCA) and Non Negative Matrix Factorization (NNMF) provides the intended level of privacy preservation and enables data analysis. The proposed technique will work for numerical, ordinal and nominal data. The outcome of CBTS is evaluated on standard datasets against popular data mining techniques with significant success and Information Entropy is also accounted

    Co3O4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction

    Full text link
    Catalysts for oxygen reduction and evolution reactions are at the heart of key renewable energy technologies including fuel cells and water splitting. Despite tremendous efforts, developing oxygen electrode catalysts with high activity at low costs remains a grand challenge. Here, we report a hybrid material of Co3O4 nanocrystals grown on reduced graphene oxide (GO) as a high-performance bi-functional catalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). While Co3O4 or graphene oxide alone has little catalytic activity, their hybrid exhibits an unexpected, surprisingly high ORR activity that is further enhanced by nitrogen-doping of graphene. The Co3O4/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions. The same hybrid is also highly active for OER, making it a high performance non-precious metal based bi-catalyst for both ORR and OER. The unusual catalytic activity arises from synergetic chemical coupling effects between Co3O4 and graphene.Comment: published in Nature Material

    One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage

    Get PDF
    Graphene-decorated V2O5 nanobelts (GVNBs) were synthesized via a low-temperature hydrothermal method in a single step. V2O5 nanobelts (VNBs) were formed in the presence of graphene oxide, a mild oxidant, which also enhanced the conductivity of GVNBs. From the electron energy loss spectroscopy analysis, the reduced graphene oxide (rGO) are inserted into the layered crystal structure of V2O5 nanobelts, which further confirmed the enhanced conductivity of the nanobelts. The electrochemical energy-storage capacity of GVNBs was investigated for supercapacitor applications. The specific capacitance of GVNBs was evaluated using cyclic voltammetry (CV) and charge/discharge (CD) studies. The GVNBs having V2O5-rich composite, namely, V(3)G(1) (VO/GO = 3:1), showed superior specific capacitance in comparison to the other composites (V(1)G(1) and V(1)G(3)) and the pure materials. Moreover, the V(3)G(1) composite showed excellent cyclic stability and the capacitance retention of about 82% was observed even after 5000 cycles.open

    Mechanistic Insights into a Non-Classical Diffusion Pathway for the Formation of Hollow Intermetallics: A Route to Multicomponent Hollow Structures

    No full text
    Hollow nanostructures are used for various applications including catalysis, sensing, and drug delivery. Methods based on the Kirkendall effect have been the most successful for obtaining hollow nanostructures of various multicomponent systems. The classical Kirkendall effect relies on the presence of a faster diffusing species in the core; the resultant imbalance in flux results in the formation of hollow structures. Here, an alternate non-Kirkendall mechanism that is operative for the formation of hollow single crystalline particles of intermetallic PtBi is demonstrated. The synthesis method involves sequential reduction of Pt and Bi salts in ethylene glycol under microwave irradiation. Detailed analysis of the reaction at various stages indicates that the formation of the intermetallic PtBi hollow nanoparticles occurs in steps. The mechanistic details are elucidated using control experiments. The use of microwave results in a very rapid synthesis of intermetallics PtBi that exhibits excellent electrocatalytic activity for formic acid oxidation reaction. The method presented can be extended to various multicomponent systems and is independent of the intrinsic diffusivities of the species involved
    corecore