317 research outputs found

    Towards Fast-Convergence, Low-Delay and Low-Complexity Network Optimization

    Full text link
    Distributed network optimization has been studied for well over a decade. However, we still do not have a good idea of how to design schemes that can simultaneously provide good performance across the dimensions of utility optimality, convergence speed, and delay. To address these challenges, in this paper, we propose a new algorithmic framework with all these metrics approaching optimality. The salient features of our new algorithm are three-fold: (i) fast convergence: it converges with only O(log(1/ϵ))O(\log(1/\epsilon)) iterations that is the fastest speed among all the existing algorithms; (ii) low delay: it guarantees optimal utility with finite queue length; (iii) simple implementation: the control variables of this algorithm are based on virtual queues that do not require maintaining per-flow information. The new technique builds on a kind of inexact Uzawa method in the Alternating Directional Method of Multiplier, and provides a new theoretical path to prove global and linear convergence rate of such a method without requiring the full rank assumption of the constraint matrix

    Non-additive Security Games

    Full text link
    We have investigated the security game under non-additive utility functions

    Asymptotically optimal load balancing in large-scale heterogeneous systems with multiple dispatchers

    Get PDF
    We consider the load balancing problem in large-scale heterogeneous systems with multiple dispatchers. We introduce a general framework called Local-Estimation-Driven (LED). Under this framework, each dispatcher keeps local (possibly outdated) estimates of the queue lengths for all the servers, and the dispatching decision is made purely based on these local estimates. The local estimates are updated via infrequent communications between dispatchers and servers. We derive sufficient conditions for LED policies to achieve throughput optimality and delay optimality in heavy-traffic, respectively. These conditions directly imply delay optimality for many previous local-memory based policies in heavy traffic. Moreover, the results enable us to design new delay optimal policies for heterogeneous systems with multiple dispatchers. Finally, the heavy-traffic delay optimality of the LED framework also sheds light on a recent open question on how to design optimal load balancing schemes using delayed information
    corecore