2,334 research outputs found

    The Jovian magnetotail and its current sheet

    Get PDF
    Analyses of Voyager magnetic field measurements have extended the understanding of the structural and temporal characteristics of Jupiter's magnetic tail. The magnitude of the magnetic field in the lobes of the tail is found to decrease with Jovicentric distance approximately as r to he-1.4, compared with the power law exponent of -1.7 found for the rate of decrease along the Pioneer 10 outbound trajectory. Voyager observations of magnetic field component variations with Jovicentric distance in the tail do not support the uniform radial plasma outflow model derived from Pioneer data. Voyager 2 has shown that the azimuthal current sheet which surrounds Jupiter in the inner and middle magnetosphere extends tailward (in the anti-Sun direction) to a distance of at least 100 R sub J. In the tail this current sheet consists of a plasma sheet and embedded neutral sheet. In the region of the tail where the sheet is observed, the variation of the magnetic field as a result of the sheet structure and its 10 hr periodic motion is the dominant variation seen

    Structure and dynamics of Saturn's outer magnetosphere and boundary regions

    Get PDF
    In 1979-1981, the three USA spacecraft Pioneer 11 and Voyagers 1 and 2 discovered and explored the magnetosphere of Saturn to the limited extent possible on flyby trajectories. Considerable variation in the locations of the bow shock (BS) and magnetopause (MP) surfaces were observed in association with variable solar wind conditions and, during the Voyager 2 encounter, possible immersion in Jupiter's distant magnetic tail. The limited number of BS and MP crossings were concentrated near the subsolar region and the dawn terminator, and that fact, together with the temporal variability, makes it difficult to assess the three dimensional shape of the sunward magnetospheric boundary. The combined BS and MP crossing positions from the three spacecraft yield an average BS-to-MP stagnation point distance ratio of 1.29 +/- 0.10. This is near the 1.33 value for the Earth's magnetosphere, implying a similar sunward shape at Saturn. Study of the structure and dynamical behavior of the outer magnetosphere, both in the sunward hemisphere and the magnetotail region using combined plasma and magnetic field data, suggest that Saturn's magnetosphere is more similar to that of Earth than that of Jupiter

    A model of interplanetary and coronal magnetic fields

    Get PDF
    Model of interplanetary and solar magnetic field structure above photosphere using Green function solution to Maxwell equation

    The magnetic field of Mercury, part 1

    Get PDF
    An updated analysis and interpretation is presented of the magnetic field observations obtained during the Mariner 10 encounter with the planet Mercury. The combination of data relating to position of the detached bow shock wave and magnetopause, and the geometry and magnitude of the magnetic field within the magnetosphere-like region surrounding Mercury, lead to the conclusion that an internal planetary field exists with dipole moment approximately 5.1 x 10 the 22nd power Gauss sq cm. The dipole axis has a polarity sense similar to earth's and is tilted 7 deg from the normal to Mercury's orbital plane. The magnetic field observations reveal a significant distortion of the modest Hermean field (350 Gamma at the equator) by the solar wind flow and the formation of a magnetic tail and neutral sheet which begins close to the planet on the night side. The composite data is not consistent with a complex induction process driven by the solar wind flow

    Magnetic field of Mercury confirmed

    Get PDF
    A contention that Mercury possesses an intrinsic magnetic field sufficient to deflect the solar wind flow was confirmed by the Mariner 10 experiment. Predictions made as to the locations where characteristic bow shock and magnetopause boundaries may be observed were also confirmed

    Observations of Mercury's magnetic field

    Get PDF
    Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin

    Magnetic field observations near Mercury: Preliminary results from Mariner 10

    Get PDF
    Results are presented from a preliminary analysis of data obtained near Mercury by the NASA/GSFC Magnetic Field Experiment on Mariner 10. A very well developed, detached bow shock wave, which developed as the super-Alfvenic solar wind interacted with the planet Mercury was observed. A magnetosphere-like region, with maximum field strength of 98 gamma at closest approach (704 km altitude) was also observed, and was contained within boundaries similar to the terrestrial magnetopause. The obstacle deflecting the solar wind flow was global in size, but the origin of the enhanced magnetic field was not established. The most plausible explanation, considering the complete body of data, favored the conclusion that Mercury has an intrinsic magnetic field

    Interaction of solar wind with Mercury and its magnetic field

    Get PDF
    A brief review is presented of magnetic field and solar wind electron observations by Mariner 10 spacecraft. The intrinsic magnetic field of the planet Mercury and the implications of such a field for the planetary interior are also discussed

    Magnetic field experiment for Voyagers 1 and 2

    Get PDF
    The magnetic field experiment to be carried on the Voyager 1 and 2 missions consists of dual low field (LFM) and high field magnetometer (HFM) systems. The dual systems provide greater reliability and, in the case of the LFM's, permit the separation of spacecraft magnetic fields from the ambient fields. Additional reliability is achieved through electronics redundancy. The wide dynamic ranges of plus or minus 0.5G for the LFM's and plus or minus 20G for the HFM's, low quantization uncertainty of plus or minus 0.002 gamma in the most sensitive (plus or minus 8 gamma) LFM range, low sensor RMS noise level of 0.006 gamma, and use of data compaction schemes to optimize the experiment information rate all combine to permit the study of a broad spectrum of phenomena during the mission. Planetary fields at Jupiter, Saturn, and possibly Uranus; satellites of these planets; solar wind and satellite interactions with the planetary fields; and the large-scale structure and microscale characteristics of the interplanetary magnetic field are studied. The interstellar field may also be measured

    Contributions to the Fourth Solar Wind Conference

    Get PDF
    Recent results in interplanetary physics are examined. These include observations of shock waves and post-shock magnetic fields made by Voyager 1, 2; observations of the electron temperature as a function of distance between 1.36 AU and 2.25 AU; and observations of the structure of sector boundaries observed by Helios 1. A theory of electron energy transport in the collisionless solar wind is presented, and compared with observations. Alfven waves and Alvenic fluctuations in the solar wind are also discussed
    • …
    corecore