11 research outputs found

    Comparação de Soluções Cardioplégicas em Cirurgia de Revascularização Miocárdica sobre Mecanismos de Autofagia e Apoptose

    Get PDF
    Resumo Fundamento A doença arterial coronariana (DAC) devido à isquemia miocárdica causa perda permanente de tecido cardíaco. Objetivos Nosso objetivo foi demonstrar o possível dano ao miocárdio em nível molecular através dos mecanismos de autofagia e apoptose em pacientes submetidos à cirurgia de revascularização miocárdica. Métodos Um grupo recebeu uma solução de cardioplegia Custodiol e o outro grupo uma solução de cardioplegia sanguínea. Duas amostras miocárdicas foram coletadas de cada paciente durante a operação, imediatamente antes da parada cardíaca e após a liberação do pinçamento aórtico. Foram avaliadas as expressões de marcadores de autofagia e apoptose. O nível de significância estatística adotado foi de 5%. Resultados A expressão do gene BECLIN foi significativa nos tecidos miocárdicos do grupo CS (p=0,0078). Os níveis de expressão dos genes CASPASE 3, 8 e 9 foram significativamente menores no grupo CC. Os níveis pós-operatórios de TnT foram significativamente diferentes entre os grupos (p=0,0072). As expressões dos genes CASPASE 8 e CASPASE 9 foram semelhantes antes e depois do pinçamento aórtico (p=0,8552, p=0,8891). No grupo CC, os níveis de expressão gênica de CASPASE 3, CASPASE 8 e CASPASE 9 não foram significativamente diferentes em amostras de tecido coletadas após pinçamento aórtico (p=0,7354, p=0,0758, p=0,4128, respectivamente). Conclusões Com nossos achados, acreditamos que as soluções CC e CS não apresentam diferença significativa em termos de proteção miocárdica durante as operações de by-pass

    Heterozygous Cc2d1a mice show sex-dependent changes in the Beclin-1/p62 ratio with impaired prefrontal cortex and hippocampal autophagy

    Get PDF
    Autism Spectrum Disorders (ASD) are a group of neurodevelopmental disorders characterized by repetitive behaviors, lack of social interaction and communication. CC2D1A is identified in patients as an autism risk gene. Recently, we suggested that heterozygous Cc2d1a mice exhibit impaired autophagy in the hippocampus. We now report the analysis of autophagy markers (Lc3, Beclin and p62) in different regions hippocampus, prefrontal cortex, hypothalamus and cerebellum, with an overall decrease in autophagy and changes in Beclin-1/p62 ratio in the hippocampus. We observed sex-dependent variations in transcripts and protein expression levels. Moreover, our analyses suggest that alterations in autophagy initiated in Cc2d1a heterozygous parents are variably transmitted to offspring, even when the offspring's genotype is wild type. Aberration in the autophagy mechanism may indirectly contribute to induce synapse alteration in the ASD brain

    LC3 and Beclin-1 as Markers of Autophagic Activity in Breast Cancer

    No full text
    Autophagy is a catabolic pathway meaning "self-eating" that facilitates nutrient recycling from damaged and aged organelles and other impaired cellular components through lysosomal degradation. Regulation of this process has been associated with the development of cancer. It can play different roles at different tumors and developmental stages of tumors. In breast cancer, similarly, autophagy functions as a mechanism promoting survival or leading to death. Whereas, it is very important to define the role of autophagy as an effective treatment strategy in breast cancer cells. Therefore, in this review, the role of inhibited autophagy is discussed with specific RNAs targeting Beclin-1 and LC3 genes in breast cancer

    Disregulation of Autophagy in the Transgenerational Cc2d1a Mouse Model of Autism

    No full text
    Autism spectrum disorder (ASD) is a heterogeneously childhood neurodevelopmental disorder, believed to be under development of various genetic and environmental factors. Autophagy and related pathways have also been implicated in the etiology of ASD. We aimed to investigate autophagic markers by generating the transgenerational inheritance of ASD-like behaviors in the Cc2d1a animal model of ASD. Cc2d1a (+/-) mouse model of ASD was built in two different groups by following three generations. After behavior test, bilateral hippocampus was sliced. Western Blot assay and quantitative real-time polymerase chain reaction (QRT-PCR) were used for measurement of LC3 and Beclin-1 as key regulators of autophagy. All of the animal and laboratory studies were conducted in the Erciyes University Genome and Stem Cell Center (GENKOK). Significant LC3 and Beclin-1 mRNA expression levels were observed in mouse hippocampus between groups and generations. Western blot confirmed the changes of the proteins in the hippocampus. LC3 expressions were increased for females and decreased for males compared to the control group. Beclin-1 expression levels were found to be significantly decreased in males and females compared to controls. This study could help explain a new pathway of autophagy in ASD mouse models. Future animal studies need to investigate sex differences in mouse modeling autism-relevant genes like CC2D1A. We anticipate our results to be a starting point for more comprehensive autophagy studies in this mouse model of ASD

    Molecular prevalence and genotyping ofGiardia duodenalisin cattle in Central Anatolia Region of Turkey

    No full text
    The molecular prevalence and genotypes ofGiardia duodenalisin cattle were investigated. A total of 450 fecal samples were collected from cattle in three provinces of Central Anatolia from August 2017 to July 2019. Genomic DNA was extracted from the fecal samples and used in molecular analysis carried out by nested PCR analyses of the beta-giardin(bg) gene ofG. duodenalis. Positive samples were further analyzed by nested PCR at two gene loci (triosephosphate isomerase(tpi) andglutamate dehydrogenase(gdh)) for genotyping ofG. duodenalisisolates. PCR analyses of thebggene indicated that the overall prevalence ofG. duodenaliswas 30.2%. However, lower rates were determined with PCR analyses forgdhandtpiloci. The sequence analyses of thebg,gdh, andtpigenes revealed the presence of zoonotic assemblage A and livestock-specific assemblage E. Combined-sequence analyses revealed that assemblage E was the most common in the study area. Our study provides the first data on the wide prevalence of livestock-specific assemblages E in cattle in Turkey. The prevalence of assemblage A in cattle also reveals the importance of cattle for zoonotic transmission of giardiasis in Turkey

    Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of Cyclin-D1 and uPAR/Integrin beta 1/ Src signaling in triple negative breast cancer cells

    No full text
    Autophagy is a catabolic process for degrading dysfunctional proteins and organelles, and closely associated with cancer cell survival under therapeutic, metabolic stress, hypoxia, starvation and lack of growth factors, contributing to resistance to therapies. However, the role of autophagy in breast cancer cells is not well understood. In the present study, we investigated the role of autophagy in highly aggressive and metastatic triple negative breast cancer (TNBC) and non-metastatic breast cancer cells and demonstrated that the knockdown of autophagy-related genes (LC3 and Beclin-1) inhibited autophagy and significantly suppressed cell proliferation, colony formation, migration/invasion and induced apoptosis in MDA-MB-231 and BT-549 TNBC cells. Knockdown of LC3 and Beclin-1 led to inhibition of multiple proto-oncogenic signaling pathways, including cyclin D1, uPAR/integrin-beta 1/Src, and PARP1. In conclusion, our study suggests that LC3 and Beclin-1 are required for cell proliferation, survival, migration and invasion, and may contribute to tumor growth and progression of highly aggressive and metastatic TNBC cells and therapeutic targeting of autophagy genes may be a potential therapeutic strategy for TNBC in breast cancer

    MicroRNA profiling identifies Forkhead box transcription factor M1 (FOXM1) regulated miR-186 and miR-200b alterations in triple negative breast cancer

    No full text
    Breast cancer (BC) is the most commonly diagnosed malignancy. MicroRNAs (miRNAs) play important roles in the tumorigenesis, metastasis and progression of BC. Forkhead Box M1 (FOXM1) oncogenic transcription factor is involved in events considered as hallmarks of cancer. However, the specific mechanism by which FOXM1 exerts its oncogenic effects remains unclear and little is known about its effects on the regulation of miRNA expression. We have found that FOXM1 is upregulated in breast cancer cells and that its expression is associated with shortened overall survival and poor prognosis in patients with BC. Using microarray technology, we assessed the expression profiles of 752 miRNAs in highly aggressive and metastatic triple negative breast cancer (TNBC) cells in response to FOXM1 knockdown and identified 13 differentialy expressed miRNAs (3 miRNAs upregulated and 10 miRNAs down-regulated). We validated the results of the miRNA expression profile in two different TNBC cells by performing qRT-PCR and identified that miR-186-5p and miR-200b-5p were consistently down- or upregulated, respectively, after knockdown of FOXM1. We further performed KEGG pathway analysis and GO enrichment analysis for miR-186-5p and miR-200b-5p, and identified that these miRNAs are associated with cancer development and progression involving toll-like receptor signaling, cell cycle, AMPK, p53 and NF-kappa B signaling pathways. Taken together, our results suggest that increased FOXM1 expression is associated with poor patient survival and leads to induction of oncomiR miR-186-5p expression and tumor-suppressor inhibition miR200b-5p, suggesting that the FOXM1/miRNA signaling pathway may contribute to poor patient prognosis and may be a potential therapeutic target in TNBC

    Molecular identification and subtype distribution of Blastocystis sp. in farm and pet animals in Turkey

    No full text
    A total of 1340 fresh fecal samples from farm and pet animals in Central Anatolia and the Middle Black Sea Region of Turkey were investigated using a PCR assay targeting the SSU rRNA of Blastocystis sp. An overall Blastocystis sp. prevalence of 19.4% (183/940) was found in farm animals, including cattle, sheep, water buffaloes, and chickens. Fecal samples of dogs, cats, and horses were negative. The highest prevalence of Blastocystis sp. was found in sheep (38.2%) among the farm animals. The SSU rRNA sequence analysis revealed two animalspecific subtypes, including ST10 in cattle and sheep and ST14 in water buffaloes. The zoonotic subtype ST7 was identified in chickens. Our results indicated a high prevalence of animal-specific subtypes in livestock and zoonotic subtype ST7 in chickens, highlighting the potential risk of chickens for zoonotic transmission of Blastocystis in the research area. This study is the first large-scale evaluation of Blastocystis in animal hosts in Turkey, and contributes to the molecular epidemiology and genetics of Blastocystis. Our results should be considered by authorities as an indication of the zoonotic importance of Blastocystis sp. and the need for surveillance in public health intervention programs

    Evaluation of DNA Damage in Patients with a Neuroendocrine Tumor

    No full text
    Objective: Neuroendocrine tumors develop from the neuroendocrine cells of the endocrine system. As these tumors are extremely slow growing compared with other cancers, they often take years to reach a measurable dimension, thus leading to the late diagnosis, which has adverse effects on the survival and quality of life of patients. There is a link between many types of cancer and genomic instability, thus the markers associated with genomic instability can be used for early diagnosis of the disease or cancer-related changes. Comet assay is the most commonly used method to test genomic instability or DNA damage. To the best of our knowledge, no data are available on DNA damage in patients with neuroendocrine tumors. This study aimed to investigate the possible risk of DNA damage in a patient with neuroendocrine tumors using the comet assay
    corecore