4 research outputs found

    Antioxidant vitamins increase the collagen content and reduce MMP-1 in a porcine model of atherosclerosis: implications for plaque stabilization

    Get PDF
    Degradation of extracellular matrix, particularly interstitial collagen, promotes plaque instability and contributes to restenosis after vascular injury. We have explored the effects of vitamins C and E on the collagen content and metalloproteinase-1 (MMP-1) expression after angioplasty in hypercholesterolemic pigs. Iliac angioplasty was performed on 18 minipigs divided into three diet groups: a normal-cholesterol (NC), a high-cholesterol (HC) and a high-cholesterol plus vitamins C+E (HCV). Four weeks later, after sacrifice, the vascular collagen content and MMP-1 protein expression, along with the plasma caseinolytic activity and lipid peroxidation, were measured. MMP-1 was also determined in arterial rings stimulated with native low-density lipoproteins (LDL) isolated from experimental groups. Cholesterol-rich diet augmented plasma lipid peroxidation (P<0.05), reduced the collagen content and increased vascular MMP-1 expression after injury (P<0.05). Enhanced caseinolytic activity (identified as MMP-1) was also observed in HC plasma samples and in supernatants from arterial rings incubated with HC-LDL. Vitamins C and E markedly increased neointimal collagen content (P<0.01), reduced the hypercholesterolemia-induced changes in vascular MMP-1 (P<0.05) and diminished plasma and ex vivo caseinolytic activity. Vitamins C and E may help stabilize atherosclerotic plaque after angioplasty and favor vascular remodeling by increasing collagen content and reducing vascular MMP-1 expression in porcine hypercholesterolemia

    Dietary supplementation with vitamins C and E prevents downregulation of endothelial NOS expression in hypercholesterolemia in vivo and in vitro

    Get PDF
    Impaired endothelium-dependent vasodilation has been associated with decreased NO bioavailability in hypercholesterolemia. This study aimed to determine whether antioxidant vitamins C and E could improve hypercholesterolemia-derived endothelial dysfunction in the porcine model, and whether observed in vivo results could be reproduced in vitro by incubation of coronary endothelial cells (EC) in the presence of native low-density lipoproteins (LDL). Adult mini-pigs were fed standard (C), cholesterol rich (HC) or cholesterol rich diet supplemented with vitamins C and E (HCV). Endothelium-dependent blood flow increase in response to acetylcholine was determined. Endothelial nitric oxide synthase (eNOS) expression was measured in arterial samples and in EC incubated with LDL isolated from porcine plasma. Vasomotor response to acetylcholine in HC was significantly lower (P<0.05) than control and HCV. There was a significant (P<0.05) decrease in eNOS immunoreactivity in HC, compared with HCV and control. Native LDL from HC, but not from HCV, induced a significant decrease in eNOS expression. Vitamins C and E treatment improved the endothelium-dependent vasomotor capacity and prevented decreased expression of eNOS in hypercholesterolemic pigs. A similar effect could be demonstrated in vitro, by incubation of EC with native LDL, suggesting that the effect of physiologically-modified LDL on eNOS could have a role in recovering vascular function

    Antioxidant vitamins increase the collagen content and reduce MMP-1 in a porcine model of atherosclerosis: implications for plaque stabilization

    No full text
    Degradation of extracellular matrix, particularly interstitial collagen, promotes plaque instability and contributes to restenosis after vascular injury. We have explored the effects of vitamins C and E on the collagen content and metalloproteinase-1 (MMP-1) expression after angioplasty in hypercholesterolemic pigs. Iliac angioplasty was performed on 18 minipigs divided into three diet groups: a normal-cholesterol (NC), a high-cholesterol (HC) and a high-cholesterol plus vitamins C+E (HCV). Four weeks later, after sacrifice, the vascular collagen content and MMP-1 protein expression, along with the plasma caseinolytic activity and lipid peroxidation, were measured. MMP-1 was also determined in arterial rings stimulated with native low-density lipoproteins (LDL) isolated from experimental groups. Cholesterol-rich diet augmented plasma lipid peroxidation (P<0.05), reduced the collagen content and increased vascular MMP-1 expression after injury (P<0.05). Enhanced caseinolytic activity (identified as MMP-1) was also observed in HC plasma samples and in supernatants from arterial rings incubated with HC-LDL. Vitamins C and E markedly increased neointimal collagen content (P<0.01), reduced the hypercholesterolemia-induced changes in vascular MMP-1 (P<0.05) and diminished plasma and ex vivo caseinolytic activity. Vitamins C and E may help stabilize atherosclerotic plaque after angioplasty and favor vascular remodeling by increasing collagen content and reducing vascular MMP-1 expression in porcine hypercholesterolemia

    Dietary supplementation with vitamins C and E prevents downregulation of endothelial NOS expression in hypercholesterolemia in vivo and in vitro

    No full text
    Impaired endothelium-dependent vasodilation has been associated with decreased NO bioavailability in hypercholesterolemia. This study aimed to determine whether antioxidant vitamins C and E could improve hypercholesterolemia-derived endothelial dysfunction in the porcine model, and whether observed in vivo results could be reproduced in vitro by incubation of coronary endothelial cells (EC) in the presence of native low-density lipoproteins (LDL). Adult mini-pigs were fed standard (C), cholesterol rich (HC) or cholesterol rich diet supplemented with vitamins C and E (HCV). Endothelium-dependent blood flow increase in response to acetylcholine was determined. Endothelial nitric oxide synthase (eNOS) expression was measured in arterial samples and in EC incubated with LDL isolated from porcine plasma. Vasomotor response to acetylcholine in HC was significantly lower (P<0.05) than control and HCV. There was a significant (P<0.05) decrease in eNOS immunoreactivity in HC, compared with HCV and control. Native LDL from HC, but not from HCV, induced a significant decrease in eNOS expression. Vitamins C and E treatment improved the endothelium-dependent vasomotor capacity and prevented decreased expression of eNOS in hypercholesterolemic pigs. A similar effect could be demonstrated in vitro, by incubation of EC with native LDL, suggesting that the effect of physiologically-modified LDL on eNOS could have a role in recovering vascular function
    corecore