13 research outputs found

    Blood vessel anastomosis is spatially regulated by Flt1 during angiogenesis

    Get PDF
    Blood vessel formation is essential for vertebrate development and is primarily achieved by angiogenesis – endothelial cell sprouting from pre-existing vessels. Vessel networks expand when sprouts form new connections, a process whose regulation is poorly understood. Here, we show that vessel anastomosis is spatially regulated by Flt1 (VEGFR1), a VEGFA receptor that acts as a decoy receptor. In vivo, expanding vessel networks favor interactions with Flt1 mutant mouse endothelial cells. Live imaging in human endothelial cells in vitro revealed that stable connections are preceded by transient contacts from extending sprouts, suggesting sampling of potential target sites, and lowered Flt1 levels reduced transient contacts and increased VEGFA signaling. Endothelial cells at target sites with reduced Flt1 and/or elevated protrusive activity were more likely to form stable connections with incoming sprouts. Target cells with reduced membrane-localized Flt1 (mFlt1), but not soluble Flt1, recapitulated the bias towards stable connections, suggesting that relative mFlt1 expression spatially influences the selection of stable connections. Thus, sprout anastomosis parameters are regulated by VEGFA signaling, and stable connections are spatially regulated by endothelial cell-intrinsic modulation of mFlt1, suggesting new ways to manipulate vessel network formation

    Flt-1 (VEGFR-1) coordinates discrete stages of blood vessel formation

    Get PDF
    In developing blood vessel networks, the overall level of vessel branching often correlates with angiogenic sprout initiations, but in some pathological situations, increased sprout initiations paradoxically lead to reduced vessel branching and impaired vascular function. We examine the hypothesis that defects in the discrete stages of angiogenesis can uniquely contribute to vessel branching outcomes

    Functional Redundancy of Paralogs of an Anaphase Promoting Complex/Cyclosome Subunit in Caenorhabditis elegans Meiosis

    No full text
    The anaphase promoting complex/cyclosome (APC/C) mediates the metaphase-to-anaphase transition by instructing the ubiquitination and turnover of key proteins at this stage of the cell cycle. We have recovered a gain-of-function allele in an APC5 subunit of the anaphase promoting complex/cyclosome. This finding led us to investigate further the role of APC5 in Caenorhabditis elegans, which contains two APC5 paralogs. We have shown that these two paralogs, such-1 and gfi-3, are coexpressed in the germline but have nonoverlapping expression patterns in other tissues. Depletion of such-1 or gfi-3 alone does not have a notable effect on the meiotic divisions; however, codepletion of these two factors results in meiotic arrest. In sum, the two C. elegans APC5 paralogs have a redundant function during the meiotic divisions

    The tailless ortholog nhr-67 functions in the development of the C. elegans ventral uterus

    Get PDF
    AbstractThe development of the C. elegans uterus provides a model for understanding the regulatory pathways that control organogenesis. In C. elegans, the ventral uterus develops through coordinated signaling between the uterine anchor cell (AC) and a ventral uterine (VU) cell. The nhr-67 gene encodes the nematode ortholog of the tailless nuclear receptor gene. Fly and vertebrate tailless genes function in neuronal and ectodermal developmental pathways. We show that nhr-67 functions in multiple steps in the development of the C. elegans uterus. First, it functions in the differentiation of the AC. Second, it functions in reciprocal signaling between the AC and an equipotent VU cell. Third, it is required for a later signaling event between the AC and VU descendants. nhr-67 is required for the expression of both the lag-2/Delta signal in the AC and the lin-12/Notch receptor in all three VU cells and their descendants, suggesting that nhr-67 may be a key regulator of Notch-signaling components. We discuss the implications of these findings for proposed developmental regulatory pathways that include the helix–loop–helix regulator hlh-2/daughterless and transcription factor egl-43/Evi1 in the differentiation of ventral uterine cell types

    Flt-1 (VEGFR-1) coordinates discrete stages of blood vessel formation

    No full text
    AIMS: In developing blood vessel networks, the overall level of vessel branching often correlates with angiogenic sprout initiations, but in some pathological situations, increased sprout initiations paradoxically lead to reduced vessel branching and impaired vascular function. We examine the hypothesis that defects in the discrete stages of angiogenesis can uniquely contribute to vessel branching outcomes. METHODS AND RESULTS: Time-lapse movies of mammalian blood vessel development were used to define and quantify the dynamics of angiogenic sprouting. We characterized the formation of new functional conduits by classifying discrete sequential stages—sprout initiation, extension, connection, and stability—that are differentially affected by manipulation of vascular endothelial growth factor-A (VEGF-A) signalling via genetic loss of the receptor flt-1 (vegfr1). In mouse embryonic stem cell-derived vessels genetically lacking flt-1, overall branching is significantly decreased while sprout initiations are significantly increased. Flt-1(−/−) mutant sprouts are less likely to retract, and they form increased numbers of connections with other vessels. However, loss of flt-1 also leads to vessel collapse, which reduces the number of new stable conduits. Computational simulations predict that loss of flt-1 results in ectopic Flk-1 signalling in connecting sprouts post-fusion, causing protrusion of cell processes into avascular gaps and collapse of branches. Thus, defects in stabilization of new vessel connections offset increased sprout initiations and connectivity in flt-1(−/−) vascular networks, with an overall outcome of reduced numbers of new conduits. CONCLUSIONS: These results show that VEGF-A signalling has stage-specific effects on vascular morphogenesis, and that understanding these effects on dynamic stages of angiogenesis and how they integrate to expand a vessel network may suggest new therapeutic strategies

    Temporal relationship between substance use and delinquent behavior among young psychiatrically hospitalized adolescents

    No full text
    There is considerable evidence linking substance use and delinquent behavior among adolescents. However, the nature and temporal ordering of this relationship remains uncertain, particularly among early adolescents and those with significant psychopathology. This study examined the temporal ordering of substance use and delinquent behavior in a sample of psychiatrically hospitalized early adolescents. Youth (n = 108) between the ages of 12 and 15 years completed three assessments over 18 months following hospitalization. Separate cross-lagged panel models examined the reciprocal relationship between delinquent behavior and two types of substance use (e.g., alcohol and marijuana). Results provided evidence of cross-lagged effects for marijuana: delinquent behavior at 9 months predicted marijuana use at 18 months. No predictive effects were found between alcohol use and delinquent behavior over time. Findings demonstrate the stability of delinquent behavior and substance use among young adolescents with psychiatric concerns. Furthermore, results highlight the value of examining alcohol and marijuana use outcomes separately in order to better understand the complex pathways between substance use and delinquent behavior among early adolescents

    ZRANB3 is an African-specific type 2 diabetes locus associated with beta-cell mass and insulin response

    No full text
    Genome analysis of diverse human populations has contributed to the identification of novel genomic loci for diseases of major clinical and public health impact. Here, we report a genome-wide analysis of type 2 diabetes (T2D) in sub-Saharan Africans, an understudied ancestral group. We analyze ~18 million autosomal SNPs in 5,231 individuals from Nigeria, Ghana and Kenya. We identify a previously-unreported genome-wide significant locus: ZRANB3 (Zinc Finger RANBP2-Type Containing 3, lead SNP p = 2.831 × 10−9). Knockdown or genomic knockout of the zebrafish ortholog results in reduction in pancreatic β-cell number which we demonstrate to be due to increased apoptosis in islets. siRNA transfection of murine Zranb3 in MIN6 β-cells results in impaired insulin secretion in response to high glucose, implicating Zranb3 in β-cell functional response to high glucose conditions. We also show transferability in our study of 32 established T2D loci. Our findings advance understanding of the genetics of T2D in non-European ancestry populations
    corecore