307 research outputs found

    Reduced-symmetry two-dimensional solitons in photonic lattices

    Full text link
    We demonstrate theoretically and experimentally a novel type of localized beams supported by the combined effects of total internal and Bragg reflection in nonlinear two-dimensional square periodic structures. Such localized states exhibit strong anisotropy in their mobility properties, being highly mobile in one direction and trapped in the other, making them promising candidates for optical routing in nonlinear lattices.Comment: 5 pages, 4 figure

    Stable spatiotemporal solitons in Bessel optical lattices

    Full text link
    We investigate the existence and stability of three-dimensional (3D) solitons supported by cylindrical Bessel lattices (BLs) in self-focusing media. If the lattice strength exceeds a threshold value, we show numerically, and using the variational approximation, that the solitons are stable within one or two intervals of values of their norm. In the latter case, the Hamiltonian-vs.-norm diagram has a "swallowtail" shape, with three cuspidal points. The model applies to Bose-Einstein condensates (BECs) and to optical media with saturable nonlinearity, suggesting new ways of making stable 3D BEC solitons and "light bullets" of an arbitrary size.Comment: 9 pages, 4 figures, Phys. Rev. Lett., in pres

    Topological dragging of solitons

    Full text link
    We put forward properties of solitons supported by optical lattices featuring topological dislocations, and show that solitons experience attractive and repulsive forces around the dislocations. Suitable arrangements of dislocations are even found to form soliton traps, and the properties of such solitons are shown to crucially depend on the trap topology. The uncovered phenomenon opens a new concept for soliton control and manipulation, e.g., in disk-shaped Bose-Einstein condensates.Comment: 15 pages, 5 figures, to appear in Physical Review Letter

    Controlled generation and steering of spatial gap solitons

    Full text link
    We demonstrate the first fully controlled generation of immobile and slow spatial gap solitons in nonlinear periodic systems with band-gap spectra, and reveal the key features of gap solitons which distinguish them from conventional counterparts, including a dynamical transformation of gap solitons due to nonlinear inter-band coupling. We also predict theoretically and confirm experimentally the effect of anomalous steering of gap solitons in optically-induced photonic lattices.Comment: 4 pages, 5 figure

    Observation of discrete vortex solitons in optically-induced photonic lattices

    Full text link
    We report on the frst experimental observation of discrete vortex solitons in two-dimensional optically-induced photonic lattices. We demonstrate strong stabilization of an optical vortex by the lattice in a self-focusing nonlinear medium and study the generation of the discrete vortices from a broad class of singular beams.Comment: 4pages, 5 colour figures. to appear in PR

    Observation of nonlinear self-trapping of broad beams in defocusing waveguide arrays

    Get PDF
    We demonstrate experimentally the localization of broad optical beams in periodic arrays of optical waveguides with defocusing nonlinearity. This observation in optics is linked to nonlinear self-trapping of Bose-Einstein-condensed atoms in stationary periodic potentials being associated with the generation of truncated nonlinear Bloch states, existing in the gaps of the linear transmission spectrum. We reveal that unlike gap solitons, these novel localized states can have an arbitrary width defined solely by the size of the input beam while independent of nonlinearity

    Soliton topology versus discrete symmetry in optical lattices

    Full text link
    We address the existence of vortex solitons supported by azimuthally modulated lattices and reveal how the global lattice discrete symmetry has fundamental implications on the possible topological charges of solitons. We set a general ``charge rule'' using group-theory techniques, which holds for all lattices belonging to a given symmetry group. Focusing in the case of Bessel lattices allows us to derive also a overall stability rule for the allowed vortex solitons.Comment: 4 pages, 3 figures. To appear in Phys. Rev. Let
    corecore