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We study the control of modulational instability and pattern formation in a nonlinear dissipative feedback
system with a periodic modulation of the material refractive index. We use an one-dimensional photonic
lattice in a single-mirror feedback configuration and identify three mechanisms for pattern control: band-gap
suppression of instability modes, periodicity induced pattern modes, and orientational pattern control. c©
2008 Optical Society of America
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Nonlinear systems displaying patterns are ubiquitous
in nature [1] and experience similar properties due to the
unique interplay between nonlinearity, dispersion, gain,
loss, and feedback in the system. In general such dissipa-
tive systems display a large number of unstable pattern
modes, which are related to the breaking of the rota-
tional and translational symmetry. Due to the feedback
however, only few of these modes are normally excited.

In optics, the formation of patterns in cavities is widely
studied [2–6] due to possible applications in emission
control of large-mode-area lasers. In these studies, vari-
ous techniques for control of the pattern formation have
been reported. These include methods based on spatial
filtering [2], frequency detuning [3], and spatial seeding
of nonlinear modes [4,5]. In addition, theoretical predic-
tions have demonstrated the extended ability for control
of the pattern formation by implementation of a pho-
tonic periodic structure inside the cavity [7]. Indeed, the
use of periodic structures have proven to enable manipu-
lation of the fundamental aspects of wave propagation [8]
and the implementation of such structures inside a cav-
ity can lead to novel nonlinear phenomena, including
discrete cavity modulational instability (MI) [7] and dis-
crete cavity solitons [9]. It was also shown experimentally
that a periodic structure can lead to suppression of the
longitudinal dynamic instability for counter-propagating
spatial solitons [10]. Despite the large theoretical interest
however, an experimental demonstration of the interplay
between periodic photonic bandgap structure and opti-
cal patterns in a feedback system is, to the best of our
knowledge, still lacking.

In this Letter, we study experimentally the conditions
for pattern formation in a feedback nonlinear system
with an one-dimensional (1D) periodically modulated
refractive index. We combine two concepts: a photore-
fractive two-wave mixing in a single-mirror configura-
tion [3] and an optically induced lattice [11]. We study
how the strength and periodicity of the optical lattice
influence the conditions for MI, and correspondingly the

Fig. 1. Top: Experimental setup. L - lenses, PBS - po-
larising beam splitter, SF - spatial filter, Lat - 1D trans-
mission grating, λ/2 - half-wave plate, M - mirror, VM -
virtual mirror, PC - BaTiO3 photorefractive crystal. In-
set: typical far- and near-field patterns. Bottom: Far-
field patterns: (a) hexagonal pattern without optical lat-
tice, (b) linear diffraction on the optical lattice, (c) co-
existence between nonlinear optical pattern and linear
diffraction for kL'2.2kP . Dashed lines denote the posi-
tion of the lattice bandgap.

pattern formation. By properly adjusting the optical lat-
tice wavevectors with respect to the wavevectors of the
system instability modes, we demonstrate three impor-
tant control mechanisms: (i) band-gap inhibition of in-
stability modes; (ii) seeding of instability patterns by
the lattice periodicity; and (iii) lattice-induced pattern
reorientation.

In our experiments we employ the setup shown in
Fig. 1. The part of the setup indicated by the solid line
is similar to the configuration described in Ref. [2]. It
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contains a photorefractive two-wave mixing in a reflec-
tion grating geometry and a tunable single feedback. In
this counterpropagating configuration, the laser beam
becomes unstable against MI and sidebands arranged in
hexagonal patterns grow from scattered light appearing
from this geometry. Their directions are determined by
both the phase matching in the nonlinear gain medium
and the effect of diffraction introduced by the feedback.
A lot of transverse k-vectors can appear but only the one
with the minimal gain threshold will grow [12, 13]. Ex-
perimentally, we use a p-polarized 532 nm pattern beam
that is focused inside an undoped BaTiO3 crystal to a
400 µm diameter. The crystalline c-axis points towards
the feedback mirror, but is rotated by roughly 25◦ with
respect to the optical axis of the system. The result-
ing contribution of the large electro-optic coefficient r232
in the conventionally hole-conducting BaTiO3 allows to
switch the sign of the photorefractive gain for the back-
ward propagating beam from negative to positive [14].
The feedback is generated via a mirror placed behind
the lens L3. The mirror can be precisely moved longitu-
dinally, to vary the position of the corresponding virtual
mirror (Fig. 1). This allows to adjust positive or nega-
tive effective propagation lengths [2]. Depending on the
distance mirror-crystal and above a threshold intensity
(ITH) a finite set of wave vectors pairs is selected, lead-
ing to formation of hexagonal pattern with a typical far-
and near-field (IP ) intensity distributions shown in the
inset of Fig. 1(top).

To create a periodic optical lattice, a Gaussian lattice
beam (shown with a dotted line in Fig. 1) is sent through
a 1D transmission grating with variable periodicity. The
±1st diffraction orders are then selected by a spatial fil-
ter in the Fourier plane of the lens L1 and recombined
in the crystal by a 4f system [10]. The intensity of the
lattice beam (IL) is tuned thanks to a half-wave plate
and a polarizing beam splitter. The patterns are iden-
tified by monitoring their far-field onto a CCD camera.
In order to avoid coherent interactions between pattern
and lattice beams, they are orthogonally polarized.

Figure 1(a) shows the typical far-field hexagonal pat-
tern formed in the absence of the lattice beam. The
optical power of the pattern beam necessary to reach
the hexagonal pattern threshold is 20 mW. To test the
strength of the optical lattice we temporarily remove the
feedback mirror and monitor the far-field of the pattern
beam diffracted on the optical lattice. The pattern beam
diffraction gives rise to the two outer spots appearing
along the diagonal, corresponding to the 45◦ lattice ori-
entation, as seen in Fig. 1(b). The central spot corre-
sponds to the zero-order of diffraction, and the other
two spots to the ±1 diffraction orders. The arrows in
Fig. 1(a,b) represent the transverse wavevectors asso-
ciated with the hexagonal pattern (kP ) and the opti-
cal lattice (kL). The former corresponds to the sponta-
neous transverse k-vector of the reflection grating that
arises during pattern formation [13]. The dashed lines in
Figs. (1–3) represent the position of the bandgap of the

Fig. 2. Bandgap inhibition of instability modes for two
different lattice beam intensities. (a, b) Suppression of
instability modes for kL'

√
3kP . (c, d) Suppression of

instability modes when kL'2kP in perpendicular direc-
tion. Dashed lines indicate the edges of Brillouin zone.

Fig. 3. Seeding of instability modes. Diagonal pat-
tern obtained at intensity below the hexagon forma-
tion threshold with (a) kL'1.3kP (hexagons) and (b)
kL'2.2kP (hexagons). kP ′ is the new wavevector associ-
ated with the new diagonal pattern.

photonic lattice, situated at kL/2 and corresponding to
the edges of the first Brillouin zone [15].

In the following, we investigate the effect of the rela-
tive magnitude and orientation of kL on the formation
of optical patterns in the system. In the experiments we
first send the lattice beam into the photorefractive crys-
tal to create the periodic refractive index modulation and
then the pattern beam is launched into the medium. For
kL'2.2kP [Fig. 1(c)], when all the wavevectors of the in-
stability modes fall within the first Brillouin zone of the
lattice, the nonlinear optical hexagonal pattern co-exists
with the linear 1D diffraction. Note that in this case the
optical power of the pattern beam ('30mW) was larger
than the previous value of 20 mW , because the presence
of the optical lattice in the crystal tends to increase the
hexagonal pattern threshold.

An important configuration for bandgap control of the
optical patterns is the one where the periodicity of the
optical lattice is such that kL=

√
3kP . In this case, some

spots of the hexagonal pattern are situated exactly in
the bandgap region of the optical lattice [Fig. 2(a)], pat-
tern and lattice beams intensities being comparable. By
increasing the lattice beam intensity, IL=5IP [as seen
by the two brighter outer spots in Fig. 2(b) than in
Fig. 2(a)], the MI can be suppressed in the bandgap

2



Fig. 4. Pattern orientation control. From left to right,
pattern orientation following the lattice rotation. Dotted
lines indicate the optical lattice position, the arrows – the
rotation of the lattice.

region [Fig. 2(b)] as a result of the fact that the lat-
tice bandgap prohibits the growth from noise of instabil-
ity modes with corresponding wavevectors. Qualitatively
similar effect occurs if two spots of the hexagons over-
lap the bandgap area for kL'2kP [Fig. 2(c, d)], again
leading to symmetry breaking of the induced patterns.
It is important to note that the output differs drastically,
when the optical lattice is sent through the crystal after
the formation of the hexagonal pattern. In this case, the
established high intensity instability modes shift the lat-
tice bandgaps such that the propagation constant of the
modes lies outside the bandgap region and suppression
of the instability is no longer possible.

The results above are obtained in a range of parame-
ters for which the pattern beam dominates the dynamics.
This situation can be changed if we decrease the pat-
tern beam intensity below the threshold for the hexagon
formation. In this case, we have found that the pres-
ence of the lattice periodicity can induce a new optical
pattern solution that reflects the lattice geometry. We
show an example of this in Fig. 3(a) where the pattern
beam power was 15mW. The new seeded pattern with
wavevectors (kP ′ in Fig. 3) inside the first Brillouin zone
now presents a diagonal symmetry instead of the hexag-
onal one and is animated by an oscillating dynamics. In
other words, the optical lattice enables the appearance of
a new wavevector whose gain is smaller than the one for
the hexagons. Indeed, this diagonal pattern disappears
in favour of a hexagonal one (with the previous wavevec-
tor kP 6=kP ′) when the probe beam intensity is increased
and reaches the threshold for the hexagons. Similar ef-
fects occur for any lattice periodicity [Fig. 3(b)]. Note
that without feedback in the system, such diagonal so-
lutions are not present.

Finally, we have considered the situation when the
wavevectors corresponding to scattering from the opti-
cal lattice coincide with the wavevectors of the instability
gain, kL'kP (see the two brighter spots located on the
dotted line in Fig. 4). Similar to the previous case, when
the pattern beam intensity is below the threshold for
formation of hexagons, we observe the induced diagonal
pattern. However, above this threshold and for an arbi-
trary direction of the lattice (dotted lines in Fig. 4), the
hexagonal pattern becomes locked to the lattice orienta-
tion. By rotating the 1D lattice, we observe a continuous
rotation of the hexagons following the lattice orienta-

tion [Fig. 4(b, c)]. This effect enables not only to choose
an orientation for the hexagons but also to stabilize the
otherwise rotationally unstable pattern. Note that, after
switching off the lattice beam, the hexagons remain un-
changed in their last position. This observation suggests
that the orientation of the hexagonal pattern depends
on the starting conditions of the system.

In conclusion, we have experimentally demonstrated a
new method for controlling the pattern formation in a
single feedback system that takes advantage of the pres-
ence of an optically induced photonic lattice. We demon-
strate a suppression of the instability occurring when a
part of the hexagonal pattern is situated in the bandgap
region of the lattice. In addition, new symmetry pat-
terns can be formed below the threshold for hexagon
formation. A control of the hexagon orientation is also
achieved when the lattice and pattern wavevectors have
the same magnitude. To our knowledge, this work shows
for the first time how a photonic lattice can influence the
pattern formation in several fashions. We believe that
similar manipulation of the nonlinear dynamics can be
potentially observed in lasers with large-mode area and
embedded photonic crystal structures.
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