54 research outputs found

    Multidimensional synthetic chiral-tube lattices via nonlinear frequency conversion.

    Full text link
    Geometrical dimensionality plays a fundamentally important role in the topological effects arising in discrete lattices. Although direct experiments are limited by three spatial dimensions, the research topic of synthetic dimensions implemented by the frequency degree of freedom in photonics is rapidly advancing. The manipulation of light in these artificial lattices is typically realized through electro-optic modulation; yet, their operating bandwidth imposes practical constraints on the range of interactions between different frequency components. Here we propose and experimentally realize all-optical synthetic dimensions involving specially tailored simultaneous short- and long-range interactions between discrete spectral lines mediated by frequency conversion in a nonlinear waveguide. We realize triangular chiral-tube lattices in three-dimensional space and explore their four-dimensional generalization. We implement a synthetic gauge field with nonzero magnetic flux and observe the associated multidimensional dynamics of frequency combs, all within one physical spatial port. We anticipate that our method will provide a new means for the fundamental study of high-dimensional physics and act as an important step towards using topological effects in optical devices operating in the time and frequency domains

    Scalable multi-dimensional synthetic space and full state reconstruction in spectral lattices

    Full text link
    © 2018 The Author(s). We propose and experimentally realize spectral photonic lattices with pumpinduced frequency couplings, which can emulate multi-dimensional dynamics with synthetic gauge fields and enable single-shot measurement of the signal phase and coherence

    Multi-dimensional synthetic space and state measurement with spectral photonic lattices

    Full text link
    © OSA 2018. We propose and experimentally realize spectral photonic lattices with pumpinduced frequency couplings, which can emulate multi-dimensional dynamics with synthetic gauge fields and enable single-shot measurement of the signal phase and coherence

    Tunable entangled photon states from a nonlinear directional coupler

    Full text link
    Integrated optical platforms enable the realization of complex quantum photonic circuits for a variety of applications including quantum simulations, computations, and communications. The development of on-chip integrated photon sources, providing photon quantum states with on-demand tunability, is currently an important research area. A flexible approach for on-chip generation of entangled photons is based on spontaneous nonlinear frequency conversion, with possibilities to integrate several photon-pair sources [1] and realize subsequent post processing using thermo-optically or electro-optically controlled interference [2, 3]. However, deterministic postprocessing can only provide a limited set of output states, whereas quantum gates with probabilistic operation are needed to generate arbitrary two-photon states [4]

    Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation

    Full text link
    © 2017 The Author(s). Spontaneous parametric down-conversion (SPDC) is a widely used method to generate entangled photons, enabling a range of applications from secure communication to tests of quantum physics. Integrating SPDC on a chip provides interferometric stability, allows to reduce a physical footprint, and opens a pathway to true scalability. However, dealing with different photon polarizations and wavelengths on a chip presents a number of challenging problems. In this work, we demonstrate an on-chip polarization beam-splitter based on z-cut titanium-diffused lithium niobate asymmetric adiabatic couplers (AAC) designed for integration with a type-II SPDC source. Our experimental measurements reveal unique polarization beam-splitting regime with the ability to tune the splitting ratios based on wavelength. In particular, we measured a splitting ratio of 17 dB over broadband regions (>60 nm) for both H-and V-polarized lights and a specific 50%/50% splitting ratio for a cross-polarized photon pair from the AAC. The results show that such a system can be used for preparing different quantum polarization-path states that are controllable by changing the phase-matching conditions in the SPDC over a broad band. Furthermore, we propose a fully integrated electro-optically tunable type-II SPDC polarization-path-entangled state preparation circuit on a single lithium niobate photonic chip

    On-chip adiabatic couplers for broadband quantum-polarization state preparation

    Full text link
    © 2018 OSA. We present a unique wavelength-dependent polarization splitter based on asymmetric adiabatic couplers designed for integration with type-II spontaneous parametric-down-conversion sources. The system can be used for preparing different quantum polarization-path states over a broad band

    Complex-birefringent dielectric metasurfaces for arbitrary polarization-pair transformations

    Get PDF
    Birefringent materials introduce phase retardance between different polarization states and underpin the operation of wave plates for control of classical and quantum light. However, such transformation always preserves the angle between two polarization states on the Poincaré sphere and does not allow for amplification of the polarization differences between two proximate states. Here we develop birefringent metasurfaces with judiciously tailored radiative loss for nonconservative class of complex-birefringence that combines polarization-dependent loss and phase retardance. We prove that the presence of loss enables the mapping of any nonorthogonal pair of polarizations to any other pair at the output. We establish an optimal design-framework for metasurfaces based on pairwise nanoresonators and experimentally demonstrate the amplification of small polarization differences with unconventional phase control. As an important example, we reveal that such metasurfaces can perform arbitrary transformations of biphoton quantum states and tailor their degree of polarization entanglement

    Quantum imaging with dielectric metasurfaces for multi-photon polarization tomography

    Full text link
    © 2017 IEEE. We suggest and realize experimentally dielectric metasurfaces with high transmission efficiency for quantum multi-photon tomography, allowing for full reconstruction of pure or mixed quantum polarization states across a broad bandwidth

    Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach

    Get PDF
    A key concept underlying the specific functionalities of metasurfaces is the use of constituent components to shape the wavefront of the light on demand. Metasurfaces are versatile, novel platforms for manipulating the scattering, color, phase, or intensity of light. Currently, one of the typical approaches for designing a metasurface is to optimize one or two variables among a vast number of fixed parameters, such as various materials’ properties and coupling effects, as well as the geometrical parameters. Ideally, this would require multidimensional space optimization through direct numerical simulations. Recently, an alternative, popular approach allows for reducing the computational cost significantly based on a deep-learning-assisted method. We utilize a deep-learning approach for obtaining high-quality factor (high-Q) resonances with desired characteristics, such as linewidth, amplitude, and spectral position. We exploit such high-Q resonances for enhanced light–matter interaction in nonlinear optical metasurfaces and optomechanical vibrations, simultaneously. We demonstrate that optimized metasurfaces achieve up to 400-fold enhancement of the third-harmonic generation; at the same time, they also contribute to 100-fold enhancement of the amplitude of optomechanical vibrations. This approach can be further used to realize structures with unconventional scattering responses
    • 

    corecore