99 research outputs found

    The cognitive integration of scientific instruments: Information, situated cognition, and scientific practice

    Get PDF
    Researchers in the biological and biomedical sciences, particularly those working in laboratories, use a variety of artifacts to help them perform their cognitive tasks. This paper analyses the relationship between researchers and cognitive artifacts in terms of integration. It first distinguishes different categories of cognitive artifacts used in biological practice on the basis of their informational properties. This results in a novel classification of scientific instruments, conducive to an analysis of the cognitive interactions between researchers and artifacts. It then uses a multidimensional framework in line with complementarity-based extended and distributed cognition theory to conceptualize how deeply instruments in different informational categories are integrated into the cognitive systems of their users. The paper concludes that the degree of integration depends on various factors, including the amount of informational malleability, the intensity and kind of information flow between agent and artifact, the trustworthiness of the information, the procedural and informational transparency, and the degree of individualisation

    Dimensions of integration in embedded and extended cognitive systems

    Get PDF
    The complementary properties and functions of cognitive artifacts and other external resources are integrated into the human cognitive system to varying degrees. The goal of this paper is to develop some of the tools to conceptualize this complementary integration between agents and artifacts. It does so by proposing a multidimensional framework, including the dimensions of information flow, reliability, durability, trust, procedural transparency, informational transparency, individualization, and transformation. The proposed dimensions are all matters of degree and jointly they constitute a multidimensional space in which situated cognitive systems can be located and have certain dimensional configurations. These dimensions provide a new perspective on the conditions for cognitive extension. They are, however, not meant to provide a set of necessary and sufficient conditions, but to provide a toolbox for investigating the degree and nature of the integration of agent and artifact into “new systemic wholes”. The higher a situated system scores on the proposed dimensions, the more functional integration occurs, and the more tightly coupled the system is.22 page(s

    The Cognitive Ecology of the Internet

    Get PDF
    In this chapter, we analyze the relationships between the Internet and its users in terms of situated cognition theory. We first argue that the Internet is a new kind of cognitive ecology, providing almost constant access to a vast amount of digital information that is increasingly more integrated into our cognitive routines. We then briefly introduce situated cognition theory and its species of embedded, embodied, extended, distributed and collective cognition. Having thus set the stage, we begin by taking an embedded cognition view and analyze how the Internet aids certain cognitive tasks. After that, we conceptualize how the Internet enables new kinds of embodied interaction, extends certain aspects of our embodiment, and examine how wearable technologies that monitor physiological, behavioral and contextual states transform the embodied self. On the basis of the degree of cognitive integration between a user and Internet resource, we then look at how and when the Internet extends our cognitive processes. We end this chapter with a discussion of distributed and collective cognition as facilitated by the Internet

    Social machines:A philosophical engineering

    Get PDF
    In Weaving the Web (2000), Berners-Lee defines Social Machines as biotechnologically hybrid Web-processes on the basis of which, “high-level activities, which have occurred just within one human’s brain, will occur among even larger more interconnected groups of people acting as if the shared a larger intuitive brain” (201–202). The analysis and design of Social Machines has already started attracting considerable attention both within the industry and academia. Web science, however, is still missing a clear definition of what a Social Machine is, which has in turn resulted in several calls for a “philosophical engineering” (Halpin 2013; Hendler & Berners-Lee 2010); Halpin et al. 2010). This paper is a first attempt to respond to this call, by combining contemporary philosophy of mind and cognitive science with epistemology. The idea of philosophical engineering implies that a sufficiently good conception of Social Machines should be of both theoretical and practical advantage. To demonstrate how the present approach can satisfy both objectives it will be used in order to address one of Wikipedia’s (the most famous Social Machine to date) most worrying concerns—i.e., the current and ongoing decline in the number of its active contributors (Halfacker et al. 2012)

    Model-Based Reasoning and Diagnosis in Traditional Chinese Medicine (TCM)

    No full text
    • 

    corecore