5 research outputs found

    Syngas Production from Protective Face Masks through Pyrolysis/Steam Gasification

    Get PDF
    The COVID-19 pandemic has caused a heavy expansion of plastic pollution due to the extensive use of personal protective equipment (PPE) worldwide. To avoid problems related to the entrance of these wastes into the environment, proper management of the disposal is required. Here, the steam gasification/pyrolysis technique offers a reliable solution for the utilization of such wastes via chemical recycling into value-added products. The aim was to estimate the effect of thermo-chemical conversion temperature and steam-to-carbon ratio on the distribution of gaseous products obtained during non-catalytic steam gasification of 3-ply face masks and KN95 respirators in a fluidized bed reactor. Experimental results have revealed that the process temperature has a major influence on the composition of gases evolved. The production of syngas was significantly induced by temperature elevation from 700 \ub0C to 800 \ub0C. The highest molar concentration of H2 gases synthesized from both types of face masks was estimated at 800 \ub0C with the steam-to-carbon ratio varying from 0 to 2. A similar trend of production was also determined for CO gases. Therefore, investigated thermochemical conversion process is a feasible route for the conversion of used face masks to valuable a product such as syngas

    Investigation of regularities of pelletized biomass thermal deformations during pyrolysis

    No full text
    Gasification process is a fairly complicated matter and using pelletized biomass for the gasification mostly results in fuel agglomeration. The pelletized biomass moving from the pyrolysis zone to the oxidation zone sticks together in lumps and disrupts entire process. In order to determine the regularities of thermal deformations, experimental research of pelletized biomass thermal deformations during pyrolysis were performed in a horizontal pyrolysis reactor from 300-900°C temperature capturing wood particle, wheat straw and wood pellet radial changes by a digital camera. Also the center temperature and the mass loss of samples were measured to determine cause of biomass thermal deformations. Observed results reveal that when increasing the pyrolysis temperature from 400-900°C, the wheat straw and wood pellets expand at the beginning of pyrolysis process and after it start to shrink, while wood particle is only affected by shrinkage. The swelling effect of pelletized samples starts decreasing over 600-650°C heating temperature and disappears when the temperature is higher than 850°C. Biomass shrinkage intensifies exponentially as the heating temperature increases till 700-750°C. However, the final shrinkage starts to decrease as the heating temperature increases from 700-750 to 900°C due to swelling of formed char. Determined phenomenon of pelletized biomass swelling explains cause of fuel adhesion in pyrolysis zone of gasifier. Besides estimated regularities of biomass thermal deformations upon pyrolysis could be used to improve the existing numerical models of biomass pyrolysis

    Twinning for promoting excellence, ability and knowledge to develop advanced waste gasification solutions

    No full text
    The H2020 project TWIN-PEAKS emphasises on promoting excellence and knowledge to develop advanced waste gasification solutions as well as incorporating power-to-X concept (PtX) by establishing a research and innovation collaboration between Lithuanian Energy Institute (LEI, Lithuania), Vytautas Magnus University (VDU, Lithuania), Technical University of Munich (TUM, Germany), Chalmers University of Technology (CTH, Sweden), and WIP (Germany). The final goal is to raise the scientific excellence, capacities and international reputation of LEI and VMU in these respective fields. This will be achieved by the planned project activities, such as training, summer schools, conference and outreach events, dedicated for early-stage and advanced researchers. One of the key activities and milestones is the adoption of a joint research strategy between project partners, which is based on three research pillars: (plasma-enhanced) gasification processes, (plasma-assisted) methanation and feedstocks and utilization pathways. The strategy fully reflects the aims and goals of Lithuania and European Union, which are defined in Lithuania’s National Energy Independence Strategy, a national law on the Usage of Alternative Fuels and European Green Deal, including circular economy and climate change initiatives and ambitions. A short outlook regarding the current situation and perspectives in waste-to-energy and power-to-X in Lithuania is also described. Finally, a short description on how the adopted research strategy may contribute to the achievement of the goals defined in national and EU initiatives is also provided
    corecore