4 research outputs found

    Human-robot interaction using a behavioural control strategy

    Get PDF
    PhD ThesisA topical and important aspect of robotics research is in the area of human-robot interaction (HRI), which addresses the issue of cooperation between a human and a robot to allow tasks to be shared in a safe and reliable manner. This thesis focuses on the design and development of an appropriate set of behaviour strategies for human-robot interactive control by first understanding how an equivalent human-human interaction (HHI) can be used to establish a framework for a robotic behaviour-based approach. To achieve the above goal, two preliminary HHI experimental investigations were initiated in this study. The first of which was designed to evaluate the human dynamic response using a one degree-of-freedom (DOF) HHI rectilinear test where the handler passes a compliant object to the receiver along a constrained horizontal path. The human dynamic response while executing the HHI rectilinear task has been investigated using a Box-Behnken design of experiments [Box and Hunter, 1957] and was based on the McRuer crossover model [McRuer et al. 1995]. To mimic a real-world human-human object handover task where the handler is able to pass an object to the receiver in a 3D workspace, a second more substantive one DOF HHI baton handover task has been developed. The HHI object handover tests were designed to understand the dynamic behavioural characteristics of the human participants, in which the handler was required to dexterously pass an object to the receiver in a timely and natural manner. The profiles of interactive forces between the handler and receiver were measured as a function of time, and how they are modulated whilst performing the tasks, was evaluated. Three key parameters were used to identify the physical characteristics of the human participants, including: peak interactive force (fmax), transfer time (Ttrf), and work done (W). These variables were subsequently used to design and develop an appropriate set of force and velocity control strategies for a six DOF Stäubli robot manipulator arm (TX60) working in a human-robot interactive environment. The optimal design of the software and hardware controller implementation for the robot system has been successfully established in keeping with a behaviour-based approach. External force control based on proportional plus integral (PI) and fuzzy logic control (FLC) algorithms were adopted to control the robot end effector velocity and interactive force in real-time. ii The results of interactive experiments with human-to-robot and robot-to-human handover tasks allowed a comparison of the PI and FLC control strategies. It can be concluded that the quantitative measurement of the performance of robot velocity and force control can be considered acceptable for human-robot interaction. These can provide effective performance during the robot-human object handover tasks, where the robot was able to successfully pass the object from/to the human in a safe, reliable and timely manner. However, after careful analysis with regard to human-robot handover test results, the FLC scheme was shown to be superior to PI control by actively compensating for the dynamics in the non-linear system and demonstrated better overall performance and stability. The FLC also shows superior performance in terms of improved sensitivity to small error changes compared to PI control, which is an advantage in establishing effective robot force control. The results of survey responses from the participants were in agreement with the parallel test outcomes, demonstrating significant satisfaction with the overall performance of the human-robot interactive system, as measured by an average rating of 4.06 on a five point scale. In brief, this research has contributed the foundations for long-term research, particularly in the development of an interactive real-time robot-force control system, which enables the robot manipulator arm to cooperate with a human to facilitate the dextrous transfer of objects in a safe and speedy manner.Thai government and Prince of Songkla University (PSU

    Force/position control of a robot manipulator for human-robot interaction

    No full text
    With regard to both human and robot capabilities, human-robot interaction provides several benefits, and this will be significantly developed and implemented. This work focuses on the development of real-time external force/position control used for human-robot interaction. The force-controlled robotic system integrated with proportional integral control was performed and evaluated to ensure its reliably and timely operational characteristics, in which appropriate proportional integral gains were experimentally adopted using a set of virtual crank-turning tests. The designed robotic system is made up of a robot manipulator arm, an ATI Gamma multi-axis force/torque sensor and a real-time external PC based control system. A proportional integral controller has been developed to provide stable and robust force control on unknown environmental stiffness and motion. To quantify its effectiveness, the robotic system has been verified through a comprehensive set of experiments, in which force measurement and ALTER real-time path control systems were evaluated. In summary, the results indicated satisfactorily stable performance of the robot force/position control system. The gain tuning for proportional plus integral control algorithm was successfully implemented. It can be reported that the best performance as specified by the error root mean square method of the radial force is observed with proportional and integral gains of 0.10 and 0.005 respectively

    Force/position control of a robot manipulator for human-robot interaction

    No full text

    Trade efficiency under FTA for Thailand’s agricultural exports: copula-based gravity stochastic frontier model

    No full text
    Abstract This study investigated the trade efficiency and trade effects under Free Trade Agreements for Thailand’s agricultural exports. There are five main trading partners comprising China, Japan, Australia, New Zealand, and India. The important agricultural commodities of rubber, cassava, fruits, vegetables, and herbs were assessed from 1998 to 2019. In a traditional stochastic frontier model the two error components of symmetric noise ( νj{\nu }_{j} ν j ) and a non-negative inefficiency ( uj{u}_{j} u j ) are assumed to be independent. This may result in invalid inferences due to misspecification. To address this obstacle, copula-based Gravity Stochastic Frontier Models (GSFM) using panel criteria were constructed to estimate trade efficiency. Empirically, the Student-t copula-based SFM minimizes both AIC and BIC. According to their mean TE, China (0.48) and Japan (0.48) had the highest export efficiencies followed by India (0.41), New Zealand (0.39), and Australia (0.33) in rank order. Hence, Thailand should pursue more FTA negotiations with the trading partners. Moreover, they should promote miscellaneous behind-the-border barriers to stimulate flows of goods to enhance the country’s trade efficiency substantially
    corecore