4 research outputs found

    D1.15 Impact Assessment Report for RP 2

    Get PDF
    This deliverable provides the impact assessment report for RP2 (M16-M30). It provides an update on the overall and specific objectives of the EXCELSIOR project that have been achieved within RP2. This task undertakes the establishment of a methodology for the yearly monitoring of the impact of the different activities carried out by Eratosthenes Centre of Excellence (ECoE) and its partners through EXCELSIOR against a set of quantified targets. The list of Key Performance Indicators established in D1.12 has been revised based on the comments received by the EXCELSIOR project reviewers on 23 June 2021 following the first project review. This list is hereby updated to reflect the activities of RP2. By monitoring the impact for the RP2, it will provide direction of the activities needed to fulfil the KPIs for the following reporting periods. The impact assessment report will be used to assess the implementation of the work plan and adjust the activities in agreement with WP and task Leaders to ensure the achievement of the Project’s strategic objectives. WP1 provides the KPI monitoring framework and general quality processes, while the WP3 defines concrete actions affecting all other WPs for meeting the Impact KPIs. This task’s activities will be coordinated with WP3 activities on strategy definition as a continuous process, in order to update the human resources, infrastructure acquisition and overall work plan and to meet new priorities identified. The analysis outputs will update the Project Action Plan of Task 1.1. The following activities were examined and assessed according to the KPIs. These activities include proposals, dissemination events, publications, academia, networks, etc. The impact for each activity was also included

    Earth Observation in the EMMENA Region: Scoping Review of Current Applications and Knowledge Gaps

    Get PDF
    Earth observation (EO) techniques have significantly evolved over time, covering a wide range of applications in different domains. The scope of this study is to review the research conducted on EO in the Eastern Mediterranean, Middle East, and North Africa (EMMENA) region and to identify the main knowledge gaps. We searched through the Web of Science database for papers published between 2018 and 2022 for EO studies in the EMMENA. We categorized the papers in the following thematic areas: atmosphere, water, agriculture, land, disaster risk reduction (DRR), cultural heritage, energy, marine safety and security (MSS), and big Earth data (BED); 6647 papers were found with the highest number of publications in the thematic areas of BED (27%) and land (22%). Most of the EMMENA countries are surrounded by sea, yet there was a very small number of studies on MSS (0.9% of total number of papers). This study detected a gap in fundamental research in the BED thematic area. Other future needs identified by this study are the limited availability of very high-resolution and near-real-time remote sensing data, the lack of harmonized methodologies and the need for further development of models, algorithms, early warning systems, and services

    Advances in interactive supported electrocatalysts for hydrogen and oxygen electrode reactions

    No full text
    Magneli phases [A. Magneli, Acta Chem. Scand. 13 (1959) 5] have been introduced as a unique electron conductive and interactive support for electrocatalysis both in hydrogen (HELR) and oxygen (OELR) electrode reactions in water electrolysis and Low Temperature PEM Fuel Cells (LT PEM FC). The Strong Metal-Support Interaction (SMSI) that imposes the former implies: (i) the hypo-hyper-d-interbonding effect and its catalytic consequences, and (ii) the interactive primary oxide (M-OH) spillover from the hypo-d-oxide support as a dynamic electrocatalytic contribution. The stronger the bonding, the more strained appear d-orbitals, thereby the less strong the intermediate adsorptive strength in the rate determining step (RDS), and consequently, the faster the facilitated catalytic electrode reaction arises. At the same time the primary oxide spillover transferred from the hypo-d-oxide support directly interferes and reacts either individually and directly to contribute to finish the oxygen reduction, or with other interactive species, like CO to contribute to the CO tolerance. In such a respect, the conditions to provide Au to act as the reversible hydrogen electrode have been proved either by its potentiodynamic surface reconstruction in a heavy water solution, or by the nanostructured SMSI Au on anatase titania with characteristic strained d-orbitals in such a hypo-hyper-d-interactive bonding (Au/TiO2). In the same context, some spontaneous tendency towards monoatomic network dispersion of Pt upon Magneli phases makes it possible to produce an advanced interactive supported electrocatalyst for cathodic oxygen reduction (ORR). The strained hypo-hyper-d-interelectronic and inter-d-orbital metal/hypo-d-oxide support bonding relative to the strength of the latter, has been inferred to be the basis of the synergistic electrocatalytic effect both in the HELR and ORR
    corecore