21 research outputs found

    Genotype Is Associated to the Degree of Virilization in Patients With Classic Congenital Adrenal Hyperplasia

    Get PDF
    Background: Molecular defects of CYP21A2 consistently decrease 21-hydroxylase activity and result in a variable expression of disease severity in patients with congenital adrenal hyperplasia (CAH).Aim: The genotype and biochemical findings were examined in an attempt to reveal any association to the degree of virilization in classic CAH patients.Methods: The study included 18 CAH patients with complete characterization of CYP21A2 mutations and were sorted based on the severity of the inherited mutations and the expected percentage of 21-hydroxylase enzyme activity.Results: Eleven out of the 18 patients manifested the SW form with the remaining seven exhibiting the SV form. The most frequent genetic defect in the classic salt-wasting (SW) and simple virilising (SV) forms was the IVS2-13A/C>G (36.1%) mutation, followed by delEX1-3 (19.4%) and p.Ile172Asn (19.4%). Four patients, who shared a combination of two mutations belonging to the most severe type, manifested only the SW form. Four out of five patients who shared homozygosity in the IVS2-13A/C>G mutation, demonstrated the SW form and only one demonstrated the SV form. All four patients who shared the p.Ile172Asn mutation, either in the homozygous or compound heterozygous state, manifested the SV form. Interestingly, a female neonate with SW, bearing the IVS2-13A/C>G/Large del, exhibited complete male virilisation (Prader 5). The remaining four affected female new-borns also exhibited the SW form, with two of them virilised as Prader 3 and the other two as Prader 4. Virilisation with clitoromegaly was also observed in one female, who presented premature adrenarche and carried the least severe p.Pro30Leu mutation.Conclusion: The frequency of the underlying mutations in our patients, with the classic form of CAH, varies but were quite similar to the ones reported in the Mediterranean region. Therefore, the identification of severe CYP21A2 defects in Cypriot patients and their comparison with the incidence and severity in different populations, will create a valuable diagnostic tool for genetic counseling in the classic form of CAH

    The pathogenic p.Gln319Ter variant is not causing congenital adrenal hyperplasia when inherited in one of the duplicated CYP21A2 genes

    Get PDF
    ObjectiveThe study aimed to identify the pathogenic status of p.Gln319Ter (NM_000500.7: c.955C>T) variant when inherited in a single CYP21A2 gene (bimodular RCCX haplotype) and to discriminate between a non-causing congenital adrenal hyperplasia (CAH) allele when inherited in a duplicated and functional CYP21A2 gene context (trimodular RCCX haplotype).Methods38 females and 8 males with hyperandrogenemia, previously screened by sequencing and identified as carriers for the pathogenic p.Gln319Ter, were herein tested by multiplex ligation-dependent probe amplification (MLPA) and a real-time PCR Copy number Variation (CNV) assay.ResultsBoth MLPA and real-time PCR CNV analyses confirmed a bimodular and pathogenic RCCX haplotype with a single CYP21A2 in 19/46 (41.30%) p.Gln319Ter carriers and who in parallel all shared elevated 17-OHP levels. The remaining 27 individuals that also carried the p.Gln319Ter exhibited low 17-OHP levels as a result of their carriership of a duplicated CYP21A2 with a trimodular RCCX haplotype. Interestingly, all of these individuals also carried in linkage disequilibrium with p.Gln319Ter two single nucleotide polymorphisms, the c.293-79G>A (rs114414746) in intron 2 and the c.*12C>T (rs150697472) in the 3’-UTR. Therefore, these variants can be used to distinguish between pathogenic and non-pathogenic genomic contexts of the c.955T (p.Gln319) in the genetic diagnosis of congenital adrenal hyperplasia (CAH).ConclusionThe employed methodologies identified a considerable number of individuals with non-pathogenic p.Gln319Ter from the individuals that typically carry the pathogenic p.Gln319Ter in a single CYP21A2. Therefore, it is extremely important the detection of such haplotypes for the prenatal diagnosis, treatment and genetic counseling in patients with CAH

    Pathogenic and low-frequency variants in children with central precocious puberty

    Get PDF
    Background: Central precocious puberty (CPP) due to premature activation of GnRH secretion results in early epiphyseal fusion and to a significant compromise in the achieved final adult height. Currently, few genetic determinants of children with CPP have been described. In this translational study, rare sequence variants in MKRN3, DLK1, KISS1, and KISS1R genes were investigated in patients with CPP. Methods: Fifty-four index girls and two index boys with CPP were first tested by Sanger sequencing for the MKRN3 gene. All children found negative (n = 44) for the MKRN3 gene were further investigated by whole exome sequencing (WES). In the latter analysis, the status of variants in genes known to be related with pubertal timing was compared with an in-house Cypriot control cohort (n = 43). The identified rare variants were initially examined by in silico computational algorithms and confirmed by Sanger sequencing. Additionally, a genetic network for the MKRN3 gene, mimicking a holistic regulatory depiction of the crosstalk between MKRN3 and other genes was designed. Results: Three previously described pathogenic MKRN3 variants located in the coding region of the gene were identified in 12 index girls with CPP. The most prevalent pathogenic MKRN3 variant p.Gly312Asp was exclusively found among the Cypriot CPP cohort, indicating a founder effect phenomenon. Seven other CPP girls harbored rare likely pathogenic upstream variants in the MKRN3. Among the 44 CPP patients submitted to WES, nine rare DLK1 variants were identified in 11 girls, two rare KISS1 variants in six girls, and two rare MAGEL2 variants in five girls. Interestingly, the frequent variant rs10407968 (p.Gly8Ter) of the KISS1R gene appeared to be less frequent in the cohort of patients with CPP. Conclusion: The results of the present study confirm the importance of the MKRN3-imprinted gene in genetics of CPP and its key role in pubertal timing. Overall, the results of the present study have emphasized the importance of an approach that aligns genetics and clinical aspects, which is necessary for the management and treatment of CPP

    RET Proto-Oncogene Variants in Patients with Medullary Thyroid Carcinoma from the Mediterranean Basin: A Brief Report

    No full text
    Multiple endocrine neoplasia type 2 (MEN2) is an autosomal dominant (AD) condition with very high penetrance and expressivity. It is characterized into three clinical entities recognized as MEN2A, MEN2B, and familial medullary thyroid carcinoma (FMTC). In both MEN2A and MEN2B, there is a manifestation of multicentric tumor formation in the major organs such as the thyroid, parathyroid, and adrenal glands where the RET proto-oncogene is expressed. The FMTC form differs from MEN2A and MEN2B, since medullary thyroid carcinoma (MTC) is the only feature observed. In this present brief report, we demonstrate a collection of RET proto-oncogene genotype data from countries around the Mediterranean Basin with variable characteristics. As expected, a great extent of the Mediterranean RET proto-oncogene genotype data resemble the data reported globally. Most interestingly, higher frequencies are observed in the Mediterranean region for specific pathogenic RET variants as a result of local prevalence. The latter can be explained by founder effect phenomena. The Mediterranean epidemiological data that are presented herein are very important for domestic patients, their family members’ evaluation, and ultimately their treatment

    Apparent homozygosity of p.Phe508del in CFTR due to a large gene deletion of exons 4–11

    No full text
    We report a classic cystic fibrosis (CF) boy with a large deletion of exons 4–11 in the cystic fibrosis transmembrane conductance regulator (CFTR) gene on one allele and p.Phe508del in exon 10 on the second allele. Both parents of Georgian and Ukrainian background had no personal or family history of the disease. The initial molecular diagnostic investigation identified the patient as homozygous for the p.Phe508del and not compatible with his parent’s genetic status. The possibility of nonpaternity or uniparental disomy (UPD7) was investigated and excluded using microsatellite analysis of highly polymorphic markers on chromosome 7. Array-CGH was also performed on the patient and revealed a male profile with a subtle deletion within the CFTR gene on the long arm (q-arm) of chromosome 7 (7q31.2). The deletion was confirmed by MLPA extending from probe L02380 to probe L14978 (28.7 kb) and that was inherited from his father, while p.PheF508del was inherited from his mother. These data highlight the need for additional testing for large deletions in patients with apparent homozygosity for a mutated CFTR allele that do not match the carrier status of the parents. Not testing can lead to misdiagnosis and misinterpretation of mutation carrier status and the expected penetrance of the disorder
    corecore