334 research outputs found

    Health education and the control of urogenital schistosomiasis: assessing the impact of the Juma na Kichocho comic-strip medical booklet in Zanzibar

    Get PDF
    Endeavours to control urogenital schistosomiasis on Unguja Island (Zanzibar) have focused on school-aged children. To assess the impact of an associated health education campaign, the supervised use of the comic-strip medical booklet Juma na Kichocho by Class V pupils attending eighteen primary schools was investigated. A validated knowledge and attitudes questionnaire was completed at baseline and repeated one year later following the regular use of the booklet during the calendar year. A scoring system (ranging from 0.0 to 5.0) measured children's understandings of schistosomiasis and malaria, with the latter being a neutral comparator against specific changes for schistosomiasis. In 2006, the average score from 751 children (328 boys and 423 girls) was 2.39 for schistosomiasis and 3.03 for malaria. One year later, the score was 2.43 for schistosomiasis and 2.70 for malaria from 779 children (351 boys and 428 girls). As might be expected, knowledge and attitudes scores for schistosomiasis increased (+0.05), but not as much as originally hoped, while the score for malaria decreased (-0.33). According to a Kolmogorov-Smirnov test, neither change was statistically significant. Analysis also revealed that 75% of school children misunderstood the importance of reinfection after treatment with praziquantel. These results are disappointing. They demonstrate that it is mistaken to assume that knowledge conveyed in child-friendly booklets will necessarily be interpreted, and acted upon, in the way intended. If long-term sustained behavioural change is to be achieved, health education materials need to engage more closely with local understandings and responses to urogenital schistosomiasis. This, in turn, needs to be part of the development of a more holistic, biosocial approach to the control of schistosomiasis

    A New Evolutionary Path to Type Ia Supernovae: Helium-Rich Super-Soft X-Ray Source Channel

    Get PDF
    We have found a new evolutionary path to Type Ia supernovae (SNe Ia) which has been overlooked in previous work. In this scenario, a carbon-oxygen white dwarf (C+O WD) is originated, not from an asymptotic giant branch star with a C+O core, but from a red-giant star with a helium core of 0.82.0M\sim 0.8-2.0 M_\odot. The helium star, which is formed after the first common envelope evolution, evolves to form a C+O WD of 0.81.1M\sim 0.8-1.1 M_\odot with transferring a part of the helium envelope onto the secondary main-sequence star. This new evolutionary path, together with the optically thick wind from mass-accreting white dwarf, provides a much wider channel to SNe Ia than previous scenarios. A part of the progenitor systems are identified as the luminous supersoft X-ray sources or the recurrent novae like U Sco, which are characterized by the accretion of helium-rich matter. The white dwarf accretes hydrogen-rich, helium-enhanced matter from a lobe-filling, slightly evolved companion at a critical rate and blows excess matter in the wind. The white dwarf grows in mass to the Chandrasekhar mass limit and explodes as an SN Ia. A theoretical estimate indicates that this channel contributes a considerable part of the inferred rate of SNe Ia in our Galaxy, i.e., the rate is about ten times larger than the previous theoretical estimates for white dwarfs with slightly evolved companions.Comment: 19 pages including 12 figures, to be published in ApJ, 519, No.

    MISSION ENGINEERING FOR HYBRID FORCE 2025

    Get PDF
    This report focuses on the mission engineering process for a hybrid force in 2025. Updated tasking from OPNAV N9I emphasized the necessity of focusing on the benefits of using cost-conservative unmanned systems. Specifically, the focus was placed on the near-peer competitor China and the problems that could be expected in an anti-access/area denial (A2/AD) situation in the South China Sea. The Naval Surface Warfare Center mission engineering approach was used to identify specific vignettes for proposed alternative fleet architectures and then analyzed using combat simulation and optimization models. Research on performance characteristics and cost were compiled on current unmanned systems, specifically those in development at a high technology readiness level. Proposed unmanned systems architectures were developed as solutions to the A2/AD problem and proposed vignettes. The unmanned systems architectures were then run through an optimization model to maximize system performance while minimizing cost. The results of the architecture optimization were then input into modeling and simulation. The overall effectiveness of each architecture in each vignette were then compared to find the most effective solution. An analysis of the results was performed to show the expected mission effectiveness and proposed cost of utilizing the proposed solution unmanned architectures. The most effective architectures included search, counter swarm, delivery, and attack systems.Lieutenant, United States NavyLieutenant, United States NavyLieutenant, United States NavyMajor, Republic of Singapore NavyMajor, Singapore ArmyLieutenant, United States NavyLieutenant, United States NavyLieutenant, United States NavyCommander, United States NavyApproved for public release. Distribution is unlimited

    Charge dynamics at heterojunctions for PbS/ZnO colloidal quantum dot solar cells probed with time-resolved surface photovoltage spectroscopy

    Get PDF
    Time-resolved laser-pump X-ray-photoemission-probe spectroscopy of a ZnO (101 ⎯ ⎯ 0 101¯0 ) substrate with and without PbS quantum dots (QDs) chemically linked to the surface is performed, using laser photon energies resonant with and below the band gap energy of the substrate (λ = 372 and 640 nm, hν = 3.33 and 1.94 eV). Charge injection from the photoexcited QDs to ZnO is demonstrated through the change in the surface photovoltage of the ZnO substrate observed when the heterojunction is illuminated with 1.94 eV radiation. The measured carrier dynamics are limited by the persistent photoconductivity of ZnO, giving dark carrier lifetimes of the order of 200 μs in a depletion layer at the interface. The chemical specificity of soft X-rays is used to separately measure the charge dynamics in the quantum dots and the substrate, yielding evidence that the depletion region at the interface extends into the PbS QD layer

    Crystal Phase Transitions in the Shell of PbS CdS Core Shell Nanocrystals Influences Photoluminescence Intensity

    Get PDF
    ABSTRACT We reveal the existence of two different crystalline phases, i.e., the metastable rock salt and the equilibrium zinc blende phase within the CdS shell of PbS CdS core shell nanocrystals formed by cationic exchange. The chemical composition profile of the core shell nanocrystals with different dimensions is determined by means of anomalous small angle X ray scattering with subnanometer resolution and is compared to X ray diffraction analysis. We demonstrate that the photoluminescence emission of PbS nanocrystals can be drastically enhanced by the formation of a CdS shell. Especially, the ratio of the two crystalline phases in the shell significantly influences the photoluminescence enhancement. The highest emission was achieved for chemically pure CdS shells below 1 nm thickness with a dominant metastable rock salt phase fraction matching the crystal structure of the PbS core. The metastable phase fraction decreases with increasing shell thickness and increasing Exchange times. The photoluminescence intensity depicts a constant decrease with decreasing metastable rock salt phase fraction but Shows an abrupt drop for shells above 1.3 nm thickness. We relate this effect to two different transition mechanisms for changing from the metastable rock salt phase to the equilibrium zinc blende phase depending on the shell thicknes

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    The Near-Earth Object Surveyor Mission

    Full text link
    The Near-Earth Object (NEO) Surveyor mission is a NASA observatory designed to discover and characterize near-Earth asteroids and comets. The mission's primary objective is to find the majority of objects large enough to cause severe regional impact damage (>>140 m in effective spherical diameter) within its five-year baseline survey. Operating at the Sun-Earth L1 Lagrange point, the mission will survey to within 45 degrees of the Sun in an effort to find the objects in the most Earth-like orbits. The survey cadence is optimized to provide observational arcs long enough to reliably distinguish near-Earth objects from more distant small bodies that cannot pose an impact hazard. Over the course of its survey, NEO Surveyor will discover \sim200,000 - 300,000 new NEOs down to sizes as small as \sim10 m and thousands of comets, significantly improving our understanding of the probability of an Earth impact over the next century.Comment: accepted to PS
    corecore