6 research outputs found

    High Performance PbS Quantum Dot/Graphene Hybrid Solar Cell with Efficient Charge Extraction.

    Get PDF
    Hybrid colloidal quantum dot (CQD) solar cells are fabricated from multilayer stacks of lead sulfide (PbS) CQD and single layer graphene (SG). The inclusion of graphene interlayers is shown to increase power conversion efficiency by 9.18%. It is shown that the inclusion of conductive graphene enhances charge extraction in devices. Photoluminescence shows that graphene quenches emission from the quantum dot suggesting spontaneous charge transfer to graphene. CQD photodetectors exhibit increased photoresponse and improved transport properties. We propose that the CQD/SG hybrid structure is a route to make CQD thin films with improved charge extraction, therefore resulting in improved solar cell efficiency

    P3HT as a hole transport layer for colloidal quantum dot solar cells

    No full text
    Lead sulfide colloidal quantum dot (CQD) solar cells demonstrate extremely high short-circuit currents (Jsc ) and are making decent progress in power conversion efficiencies. However, the low fill factors (FF) and open-circuit voltages have to be addressed with urgency to prevent the stalling of efficiency improvements. This paper highlights the importance of improving hole extraction, which received much less attention as compared to the electron accepting component of the device architecture (eg. TiO2 or ZnO). Here, we show the use of semiconducting polymer Poly(3-hexylthiophene-2,5-diyl) (P3HT) to create efficient CQD devices by improving hole transport, removing interfacial barriers and minimizing shunt pathways, thus resulting in an overall improvement in device performance stemming from better Jsc and FF

    Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells

    No full text
    Cation-exchange has been used to synthesize PbS/CdS core/shell colloidal quantum dots from PbS starting cores. These were then incorporated as the active material in solar cell test devices using a solution-based, air-ambient, layer-by-layer spin coating process. We show that core/shell colloidal quantum dots can replace their unshelled counterparts with a similar band gap as the active layer in a solar cell device, leading to an improvement in open circuit voltage from 0.42 to 0.66 V. This improvement is attributed to a reduction in recombination as a result of the passivating shell. However, this increase comes at the expense of short circuit current by creating a barrier for transport. To overcome this, we first optimize the shell thickness by varying the conditions for cation-exchange to form the thinnest shell layer possible that provides sufficient surface passivation. Next, ligand exchange with a combination of halide and bifunctional organic molecules is used in conjunction with the core/shell strategy. Power conversion efficiencies of 5.6 ± 0.4% have been achieved with a simple heterojunction device architecture
    corecore