38 research outputs found

    Assessment of Urban Biodiversity: A Case Study of Beijing City, China

    Get PDF
    Habitat loss is the most important factor affecting biodiversity. Beijing is an international metropolis with rich biodiversity. With the development of urbanization, biodiversity has been affected to a certain extent in Beijing City. We investigated plant communities in three green land types, parks, residential areas, and roads along an urbanization gradient in the Beijing urban area (inner 6th ring road). Species composition, similarity index, and diversity of plants in urban areas were calculated. The results showed 536 species, belonging to 103 families, and 319 genera in the Beijing urban area. Among them, there were 361 native species and 175 imported species. Eighty species were imported from abroad and 95 species from inland, namely 14.9% and 17.7% of the total species, respectively. The species richness and diversity of trees and shrubs first increased and then decreased along the urbanization gradients, with the decreasing trend from the inner 2nd ring road and the increasing trend from the 3rd–4th ring road. No significant difference was found along the urbanization gradient for herbaceous plants. There were no significant differences in species evenness along the urbanization gradient

    Spatiotemporal variation of habitat quality and its response to fractional vegetation cover change and human disturbance in the Loess Plateau

    Get PDF
    It is of great practical significance to regional ecological conservation and restoration to explore the spatiotemporal variation characteristics of habitat quality in the ecologically fragile Loess Plateau. This study firstly explored the habitat quality in the Loess Plateau during 2000-2020 with the Integrated Valuation of Ecosystem Services and Trade-offs model. Then this study revealed the response characteristics of habitat quality to the fractional vegetation cover (FVC) change and human disturbance with the geographically weighted regression (GWR) model. Results showed habitat quality tended to improve in 51.16% of the study area, and area of high or very high habitat quality increased by 1.78%. Besides, FVC showed dominantly significant increase (62.42%) and high stability (69.66%) in the study area, and human disturbance increased remarkably in 18.11% of the study area but maintained the same level in 91.83% of the study area. Additionally, areas with positive correlation between habitat quality change and FVC and between habitat quality change and human disturbance change accounted for 52.56% and 37.38% of the study area, respectively, indicating FVC played dominant role in affecting the regional habitat quality variation. This study can provide important decision support information for the future ecological conservation of the Loess Plateau

    Prediction and Selection of Appropriate Landscape Metrics and Optimal Scale Ranges Based on Multi-Scale Interaction Analysis

    No full text
    Landscape metrics are widely used in landscape planning and land use management. Understanding how landscape metrics respond with scales can provide more accurate prediction information; however, ignoring the interference of multi-scale interaction may lead to a severe systemic bias. In this study, we quantitatively analyzed the scaling sensitivity of metrics based on multi-scale interaction and predict their optimal scale ranges. Using a big data method, the multivariate adaptive regression splines model (MARS), and the partial dependence model (PHP), we studied the scaling relationships of metrics to changing scales. The results show that multi-scale interaction commonly exists in most landscape metric scaling responses, making a significant contribution. In general, the scaling effects of the three scales (i.e., spatial extent, spatial resolution, and classification of land use) are often in a different direction, and spatial resolution is the primary driving scale in isolation. The findings show that only a few metrics are highly sensitive to the three scales throughout the whole scale spectrum, while the other metrics are limited within a certain threshold range. This study confirms that the scaling-sensitive scalograms can be used as an application guideline for selecting appropriate landscape metrics and optimal scale ranges

    Prediction and Selection of Appropriate Landscape Metrics and Optimal Scale Ranges Based on Multi-Scale Interaction Analysis

    No full text
    Landscape metrics are widely used in landscape planning and land use management. Understanding how landscape metrics respond with scales can provide more accurate prediction information; however, ignoring the interference of multi-scale interaction may lead to a severe systemic bias. In this study, we quantitatively analyzed the scaling sensitivity of metrics based on multi-scale interaction and predict their optimal scale ranges. Using a big data method, the multivariate adaptive regression splines model (MARS), and the partial dependence model (PHP), we studied the scaling relationships of metrics to changing scales. The results show that multi-scale interaction commonly exists in most landscape metric scaling responses, making a significant contribution. In general, the scaling effects of the three scales (i.e., spatial extent, spatial resolution, and classification of land use) are often in a different direction, and spatial resolution is the primary driving scale in isolation. The findings show that only a few metrics are highly sensitive to the three scales throughout the whole scale spectrum, while the other metrics are limited within a certain threshold range. This study confirms that the scaling-sensitive scalograms can be used as an application guideline for selecting appropriate landscape metrics and optimal scale ranges

    Spatial Pattern and Habitat Changes of Amphibian Species in the Priority Area for Biodiversity Conservation in the South Hengduan Mountains

    No full text
    Amphibian species, as typical objects to study the evolution of vertebrates from aquatic to terrestrial, have faced serious threats in recent decades. This study revealed changes in the spatial distribution pattern of amphibians and their habitats in the priority area for biodiversity conservation in the south of the Hengduan Mountains based on remote sensing and field survey data. Results showed that 71 species of amphibians in 27 genera of 10 families of 2 orders were recorded in the study area, among which 46 species were endemic to China. In particular, there were four national protected species and two newly found species. The amphibian species richness was overall higher in the northern part and lower in the southern part of the study area. There was an obvious variation in the species composition in five major geographic zones in the study area, and the species richness, number, and endemism were all the highest in areas between 2000 and 3000 m. There was a higher abundance of some endemic species, i.e., the Amolops, Bufo, and Scutiger. The main habitats of amphibian species included the forest, farmland, and grassland. There was remarkable fragmentation of these habitats, which was mainly due to land use conversion. There are currently 14 national nature reserves in the study area, covering 39 amphibian species, but there are still 32 amphibian species outsides these nature reserves. It is recommended to carry out long-term located monitoring, improve the existing protection network, and fill the protection gaps to achieve effective protection of these valuable biological resources

    A new species of Odorrana (Anura, Ranidae) from Hunan Province, China

    Get PDF
    A new species, Odorrana sangzhiensis sp. nov., is described, based on five specimens from Sangzhi County, Zhangjiajie City, Hunan Province, China. Molecular phylogenetic analyses, based on mitochondrial 12S rRNA and 16S rRNA gene sequences, strongly support the new species as a monophyletic group nested into the O. schmackeri species complex. The new species can be distinguished from its congeners by a combination of the following characters: (1) body size medium (SVL: 42.1–45.1 mm in males, 83.3–92.7 mm in females); (2) dorsolateral folds absent; (3) tympanum diameter 1.53 times as long as the width of the disc of finger III in females; 2.3 times in males; (4) dorsal skin green with dense granules and sparse irregular brown spots; males with several large warts on dorsum; (5) two metacarpal tubercles; (6) relative finger lengths: I ≤ II < IV < III; (7) tibiotarsal articulation beyond the tip of the snout; (8) ventral surface smooth in females; throat and chest having pale spinules in adult males; (9) dorsal limbs green or yellow green with brown transverse bands; and (10) paired external vocal sacs located at corners of the throat, finger I with light yellow nuptial pad in males. This discovery increases the number of Odorrana species to 59 and those known from China to 37

    Characteristics, Source and Risk Assessment of Soil Polycyclic Aromatic Hydrocarbons around Oil Wells in the Yellow River Delta, China

    No full text
    The Yellow River Delta (YRD) is the most complete wetland ecosystem in the warm temperate zone of China and is rich in oil resources. However, with petroleum extraction and the development of the economy, pollution of the YRD has been paid increasing attention, in particular, pollution via polycyclic aromatic hydrocarbons (PAHs), as they have caused great harm to human health and the ecosystem balance. Based on the investigations of a research group in 2009, this study re-collected samples according to the same sampling points and analyzed the concentration, composition, source, ecological risk and health risk of PAHs in 2021. The concentration of ΣPAH16 in the surface soil of YRD in 2009 ranged from 2.6 to 8275.46 ng/g, with an average of 1744.41 ng/g. The concentration of ΣPAH16 in 2021 ranged from 56.25 to 582.56 ng/g, with an average of 149.63 ng/g. Therefore, the pollution situation in the YRD in 2021 was significantly improved compared with 2009. The composition of PAHs in soil in 2009 and 2021 was similar, which was dominated by low-ring PAHs. The evaluation results of the toxicity equivalent factor method showed that there was no potential ecological risk in the soil in 2009 and 2021. The evaluation results of the lifetime cancer risk increment model showed that the incremental lifetime cancer risk models (ILCRs) of soil PAHs in 2009 and 2021 were lower than the safety threshold of 10−6; therefore, there was no carcinogenic risk. The existing management measures for oil wells need to be further promoted to protect the regional ecological environment in the YRD
    corecore