36 research outputs found

    The polyphenolic and hydroxycinnamate contents of whole coffee fruits from China, India and Mexico

    Get PDF
    Air dried whole coffee fruits, beans and husks from China, India and Mexico were analysed for their chlorogenic acids (CGA), caffeine, and polyphenolic content. Analysis was by HPLC and Orbitrap exact mass spectrometry. Total phenol, total flavonol and antioxidant capacity were measured. The hydroxycinnamate profile consisted of caffeoylquinic acids, feruloyquinic acids, dicaffeoylquinic acids and caffeoyl-feruloylquinic acids. A range of flavan-3-ols as well as flavonol conjugates were detected. The CGA content was similar for both Mexico and India coffee fruits but was much lower in China samples. Highest levels of flavan-3-ols were found in the Indian samples whereas Mexico samples contained the highest flavonols. Amounts of CGAs in the beans were similar to those in the whole fruits, but flavan-3-ols and flavonols were not detected. The husks contained the same range of polyphenols as in the whole fruits. Highest levels of caffeine were found in the Robusta samples

    Systematic identification of abundant A-to-I editing sites in the human transcriptome

    Full text link
    RNA editing by members of the double-stranded RNA-specific ADAR family leads to site-specific conversion of adenosine to inosine (A-to-I) in precursor messenger RNAs. Editing by ADARs is believed to occur in all metazoa, and is essential for mammalian development. Currently, only a limited number of human ADAR substrates are known, while indirect evidence suggests a substantial fraction of all pre-mRNAs being affected. Here we describe a computational search for ADAR editing sites in the human transcriptome, using millions of available expressed sequences. 12,723 A-to-I editing sites were mapped in 1,637 different genes, with an estimated accuracy of 95%, raising the number of known editing sites by two orders of magnitude. We experimentally validated our method by verifying the occurrence of editing in 26 novel substrates. A-to-I editing in humans primarily occurs in non-coding regions of the RNA, typically in Alu repeats. Analysis of the large set of editing sites indicates the role of editing in controlling dsRNA stability.Comment: Pre-print version. See http://dx.doi.org/10.1038/nbt996 for a reprin

    Benthic pH gradients across a range of shelf sea sediment types linked to sediment characteristics and seasonal variability

    Get PDF
    This study used microelectrodes to record pH profiles in fresh shelf sea sediment cores collected across a range of different sediment types within the Celtic Sea. Spatial and temporal variability was captured during repeated measurements in 2014 and 2015. Concurrently recorded oxygen microelectrode profiles and other sedimentary parameters provide a detailed context for interpretation of the pH data. Clear differences in profiles were observed between sediment type, location and season. Notably, very steep pH gradients exist within the surface sediments (10–20 mm), where decreases greater than 0.5 pH units were observed. Steep gradients were particularly apparent in fine cohesive sediments, less so in permeable sandier matrices. We hypothesise that the gradients are likely caused by aerobic organic matter respiration close to the sediment–water interface or oxidation of reduced species at the base of the oxic zone (NH4+, Mn2+, Fe2+, S−). Statistical analysis suggests the variability in the depth of the pH minima is controlled spatially by the oxygen penetration depth, and seasonally by the input and remineralisation of deposited organic phytodetritus. Below the pH minima the observed pH remained consistently low to maximum electrode penetration (ca. 60 mm), indicating an absence of sub-oxic processes generating H+ or balanced removal processes within this layer. Thus, a climatology of sediment surface porewater pH is provided against which to examine biogeochemical processes. This enhances our understanding of benthic pH processes, particularly in the context of human impacts, seabed integrity, and future climate changes, providing vital information for modelling benthic response under future climate scenarios

    Acute reduction of serum 8-iso-PGF2-alpha and advanced oxidation protein products in vivo by a polyphenol-rich beverage; a pilot clinical study with phytochemical and in vitro antioxidant characterization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Measuring the effects of the acute intake of natural products on human biomarker concentrations, such as those related to oxidation and inflammation, can be an advantageous strategy for early clinical research on an ingredient or product.</p> <p>Methods</p> <p>31 total healthy subjects were randomized in a double-blinded, placebo-controlled, acute pilot study with post-hoc subgroup analysis on 20 of the subjects. The study examined the effects of a single dose of a polyphenol-rich beverage (PRB), commercially marketed as "SoZo<sup>ÂŽ</sup>", on serum anti-inflammatory and antioxidant markers. In addition, phytochemical analyses of PRB, and <it>in vitro </it>antioxidant capacity were also performed.</p> <p>Results</p> <p>At 1 hour post-intake, serum values for 8-iso-PGF2-alpha and advanced oxidation protein products decreased significantly by 40% and 39%, respectively. Additionally, there was a trend toward decreased C-reactive protein, and increased nitric oxide levels. Both placebo and PRB treatment resulted in statistically significant increases in hydroxyl radical antioxidant capacity (HORAC) compared to baseline; PRB showed a higher percent change (55-75% versus 23-74% in placebo group), but the two groups did not differ significantly from each other.</p> <p>Conclusions</p> <p>PRB produced statistically significant changes in several blood biomarkers related to antioxidant/anti-inflammatory effects. Future studies are justified to verify results and test for cumulative effects of repeated intakes of PRB. The study demonstrates the potential utility of acute biomarker measurements for evaluating antioxidant/anti-inflammatory effects of natural products.</p

    Serotonergic Contribution to Boys' Behavioral Regulation

    Get PDF
    Animal and human adult studies reveal a contribution of serotonin to behavior regulation. Whether these findings apply to children is unclear. The present study investigated serotonergic functioning in boys with a history of behavior regulation difficulties through a double-blind, acute tryptophan supplementation procedure.Participants were 23 boys (age 10 years) with a history of elevated physical aggression, recruited from a community sample. Eleven were given a chocolate milkshake supplemented with 500 mg tryptophan, and 12 received a chocolate milkshake without tryptophan. Boys engaged in a competitive reaction time game against a fictitious opponent, which assessed response to provocation, impulsivity, perspective taking, and sharing. Impulsivity was further assessed through a Go/No-Go paradigm. A computerized emotion recognition task and a staged instrumental help incident were also administered.Boys, regardless of group, responded similarly to high provocation by the fictitious opponent. However, boys in the tryptophan group adjusted their level of responding optimally as a function of the level of provocation, whereas boys in the control group significantly decreased their level of responding towards the end of the competition. Boys in the tryptophan group tended to show greater perspective taking, tended to better distinguish facial expressions of fear and happiness, and tended to provide greater instrumental help to the experimenter.The present study provides initial evidence for the feasibility of acute tryptophan supplementation in children and some effect of tryptophan supplementation on children's behaviors. Further studies are warranted to explore the potential impact of increased serotonergic functioning on boys' dominant and affiliative behaviors

    Send more data: a systematic review of mathematical models of antimicrobial resistance

    Get PDF
    Abstract Background Antimicrobial resistance is a global health problem that demands all possible means to control it. Mathematical modelling is a valuable tool for understanding the mechanisms of AMR development and spread, and can help us to investigate and propose novel control strategies. However, it is of vital importance that mathematical models have a broad utility, which can be assured if good modelling practice is followed. Objective The objective of this study was to provide a comprehensive systematic review of published models of AMR development and spread. Furthermore, the study aimed to identify gaps in the knowledge required to develop useful models. Methods The review comprised a comprehensive literature search with 38 selected studies. Information was extracted from the selected papers using an adaptation of previously published frameworks, and was evaluated using the TRACE good modelling practice guidelines. Results None of the selected papers fulfilled the TRACE guidelines. We recommend that future mathematical models should: a) model the biological processes mechanistically, b) incorporate uncertainty and variability in the system using stochastic modelling, c) include a sensitivity analysis and model external and internal validation. Conclusion Many mathematical models of AMR development and spread exist. There is still a lack of knowledge about antimicrobial resistance, which restricts the development of useful mathematical models

    The tight foreskin: A psychosomatic phenomenon

    No full text

    Dermaval&trade; inhibits glucose-induced neutrophil elastase activity in healthy subjects

    No full text
    Tania Reyes-Izquierdo,1 Boris Nemzer,2 Ruby Argumedo,1 Cynthia Shu,1 Zb Pietrzkowski1 1Applied BioClinical Inc., Irvine, CA, 2FutureCeuticals Inc, Momence, IL, USA Background: Dermaval&trade; is a composite formulation of various phytochemical-rich plant materials as quantified using high-performance liquid chromatography. This blend exerts inhibitory activity on human neutrophil elastase (HNE). An acute, crossover clinical study was performed to assess the effects of Dermaval on glucose-induced HNE activity in 20 healthy subjects. Methods: Participants served as their own controls during this 3-day trial. On day 1, all study participants were fasted and given only 300 mL of water. Blood was drawn before treatment and 60 and 120 minutes post treatment. On day 2, participants were fasted, treated with 75 g of glucose, and similarly tested. On day 3, participants consumed a 50 mg serving of Dermaval followed by 75 g of glucose 15 minutes later. HNE concentration and HNE total activity were determined using enzyme-linked immunosorbent assay. Results: Average values for HNE activity in the control group (day 1) did not change. Treatment with a single dose of glucose (day 2) increased blood HNE activity by 175% over baseline levels (P=0.005) during the first 60 minutes. Pretreatment with Dermaval on day 3 prevented the glucose-induced increase in HNE activity (P=0.005 at 60 minutes and P=0.03 at 120 minutes versus respective day 2 values). Interestingly, ingestion of 75 g of glucose resulted in the same blood glucose levels on days 2 and 3, indicating that ingestion of Dermaval did not affect glucose absorption. Conclusion: These results suggest that Dermaval acutely inhibits glucose-induced HNE activity. Further investigations are needed to elucidate the direct and/or indirect mechanism of this effect and to verify whether treatment with Dermaval without glucose may acutely affect activity of HNE as well. Keywords: crossover study, human neutrophil elastase, glucos
    corecore