876 research outputs found

    Symmetrical interfacial reconstruction and magnetism in La_(0.7)Ca_(0.3)MnO_(3)/YBa_(2)Cu_(3)O_(7)/La_(0.7)Ca_(0.3)MnO_(3) heterostructures

    Get PDF
    We have analyzed the interface structure and composition of La_(0.7)Ca_(0.3)MnO_(3)/YBa_(2)Cu_(3)O_(7)/La_(0.7)Ca_(0.3)MnO_(3) trilayers by combined polarized neutron reflectometry, aberration-corrected microscopy, and atomic column resolution electron-energy-loss spectroscopy and x ray absorption with polarization analysis. We find the same stacking sequence at both top and bottom cuprate interfaces. X-ray magnetic circular dichroism experiments show that both cuprate interfaces are magnetic with a magnetic moment induced in Cu atoms as expected from symmetric Mn-O-Cu superexchange paths. These results supply a solid footing for the applicability of recent theories explaining the interplay between magnetism and superconductivity in this system in terms of the induced Cu spin polarization at both interfaces

    Impedance spectroscopy of encapsulated single graphene layers

    Get PDF
    In this work, we demonstrate the use of electrical impedance spectroscopy (EIS) for the disentanglement of several dielectric contributions in encapsulated single graphene layers. The dielectric data strongly vary qualitatively with the nominal graphene resistance. In the case of sufficiently low resistance of the graphene layers, the dielectric spectra are dominated by inductive contributions, which allow for disentanglement of the electrode/graphene interface resistance from the intrinsic graphene resistance by the application of an adequate equivalent circuit model. Higher resistance of the graphene layers leads to predominantly capacitive dielectric contributions, and the deconvolution is not feasible due to the experimental high frequency limit of the EIS technique

    Ferroelectric substrate effects on the magnetism, magnetotransport, and electroresistance of La0.7Ca0.3MnO3 thin films on BaTiO3

    Get PDF
    La0.7Ca0.3MnO3 optimally doped epitaxial films were grown on ferroelectric BaTiO3 substrates. Electronic transport (magnetoresistance and electroresistance) and magnetic properties showed important anomalies in the temperature interval between 60 and 150 K, below the metal-insulator transition. Scanning probe microscopy revealed changes in BaTiO3 surface morphology at those temperatures. La0.7Ca0.3MnO3 thickness is a critical factor: 120-angstrom -thick films showed large anomalies sensitive to electric poling of the BaTiO3, whereas the behavior of 150-angstrom -thick films is closer to that of the reference La0.7Ca0.3MnO3 samples grown on SrTiO3. We propose that, through inhomogenous strain and electric polarization effects, the ferroelectric substrate induces an inhomogenous spin distribution in the magnetic layer. This would imply the coexistence of in-plane and out-of-plane ferromagnetic patches in La0.7Ca0.3MnO3, possibly interspersed with antiferromagnetic regions, as it has recently been theoretically predicted. Substrate poling effects are investigated, and a magnetoelectric coupling is demonstrated

    Features of the High-Temperature Structural Evolution of GeTe Thermoelectric Probed by Neutron and Synchrotron Powder Diffraction

    Get PDF
    Among other chalcogenide thermoelectric materials, GeTe and derivative alloys are good candidates for intermediate temperature applications, as a replacement for toxic PbTe. We have prepared pure polycrystalline GeTe by using arc-melting, and investigated its structural evolution by using neutron powder diffraction (NPD) and synchrotron X-ray diffraction (SXRD), as well as its correlation with the thermal variation of the Seebeck coefficient. Besides a significant Ge deficiency (~7% Ge vacancies), the thermal evolution of the unit-cell volume and Ge-Te bond lengths in the rhombohedral phase (space group R3m), below 700 K, show unexpected anomalies involving the abrupt Ge-Te bond lengthening accompanied by increased Te thermal displacements. Above 700 K, the sample is cubic (space group Fm-3m) and shows considerably larger displacement parameters for Ge than for Te, as a consequence of the random distribution of the lone pair lobes of Ge2+. The Seebeck coefficient, reaching 120 μV K−1 at 775 K, shows a shoulder in the 500–570 K region that can be correlated to the structural anomaly, modifying the electron-phonon scattering in this temperature range

    Review: Metastable materials accessed under moderate pressure conditions (P <= 3.5 GPa) in a piston-Cylinder press

    Get PDF
    In this review, we describe different families of metastable materials, some of them with relevant technological applications, which can be stabilized at moderate pressures 2-3.5 GPa in a piston-cylinder press. The synthesis of some of these systems had been previously reported under higher hydrostatic pressures (6-10 GPa), but can be accessed under milder conditions in combination with reactive precursors prepared by soft-chemistry techniques. These systems include perovskites with transition metals in unusual oxidation states (e.g., RNiO_(3) with Ni^(3+), R = rare earths); double perovskites such as RCu_(3)Mn_(4)O_(12) with Jahn-Teller Cu^(2+) ions at A sites, pyrochlores derived from Tl_(2)Mn_(2)O_(7) with colossal magnetoresistance, pnictide skutterudites M_(x)Co_(4)Sb_(12) (M = La, Yb, Ce, Sr, K) with thermoelectric properties, or metal hydrides Mg_(2)MH_(x) (M = Fe, Co, Ni) and AM_(g)H_(3) (A: alkali metals) with applications in hydrogen storage. The availability of substantial amounts of sample (0.5-1.5 g) allows a complete characterization of the properties of interest, including magnetic, transport, thermoelectric properties and so on, and the structural characterization by neutron or synchrotron X-ray diffraction techniques

    Signatures of a two-dimensional ferromagnetic electron gas at the La_(0.7)Sr_(0.3)MnO_(3)/SrTiO_(3) interface arising from orbital reconstruction

    Get PDF
    The magnetoresistance of La0.7Sr0.3MnO3/SrTiO3La0.7Sr0.3MnO3/SrTiO3 superlattices with magnetic field rotating out-of-plane shows unexpected peaks for in-plane fields. Resistivity calculations with spin–orbit coupling reveal that orbital reconstruction at the manganite interface leads to a 2D ferromagnetic electron gas coupled antiparallel to the manganite “bulk”. These orbital and magnetic reconstructions are supported by X-ray linear dichroism and ab initio calculations

    Origin of the inverse spin-switch behavior in manganite/cuprate/manganite trilayers

    Get PDF
    We studied ferromagnet/superconductor/ferromagnet trilayers based on La_(0.7)Ca_(0.3)MnO_(3) manganite and YBa_(2)Cu_(3)O_(7−δ) (YBCO) high-T_(c) cuprate with magnetoresistance and magnetization measurements. We find an inverse superconducting spin-switch behavior, where superconductivity is favored for parallel alignment of the magnetization in the ferromagnetic layers. We argue that this inverse superconducting spin switch originates from the transmission of spin-polarized carriers into the superconductor. In this picture, the thickness dependence of the magnetoresistance yields the spin-diffusion length in YBCO as 13 nm. A comparison of bilayers and trilayers allows ruling out the effect of the stray fields of the domain structure of the ferromagnet as the source of the inverse superconducting spin switch

    Reduced thermal conductivity in Nnnostructured AgSbTe_(2) thermoelectric material, obtained by Arc-Melting

    Get PDF
    AgSbTe_(2) intermetallic compound is a promising thermoelectric material. It has also been described as necessary to obtain LAST and TAGS alloys, some of the best performing thermoelectrics of the last decades. Due to the random location of Ag and Sb atoms in the crystal structure, the electronic structure is highly influenced by the atomic ordering of these atoms and makes the accurate determination of the Ag/Sb occupancy of paramount importance. We report on the synthesis of polycrystalline AgSbTe_(2) by arc-melting, yielding nanostructured dense pellets. SEM images show a conspicuous layered nanostructuration, with a layer thickness of 25-30 nm. Neutron powder diffraction data show that AgSbTe_(2) crystalizes in the cubic Pm-3m space group, with a slight deficiency of Te, probably due to volatilization during the arc-melting process. The transport properties show some anomalies at similar to 600 K, which can be related to the onset temperature for atomic ordering. The average thermoelectric figure of merit remains around similar to 0.6 from similar to 550 up to similar to 680 K

    Thermal expansion and rattling behavior of Gd-filled Co_(4)Sb_(12) skutterudite determined by high-resolution synchrotron x-ray diffraction

    Get PDF
    In this work, Gd-filled skutterudite Gd_(x)Co_(4)Sb_(12) was prepared using one step method under high pressure in a piston-cylinder-based press at 3.5 GPa and moderate temperature of 800 degrees C. A detailed structural characterization was performed using synchrotron X-ray diffraction (SXRD), revealing a filling fraction of x = 0.033(2) and an average bond length of 3.3499(3) angstrom. The lattice thermal expansion accessed via temperature-dependent SXRD led to a precise determination of a Debye temperature of 322(3) K, from the fitting of the unit-cell volume expansion using the second order Gruneisen approximation. This parameter, when evaluated through the mean square displacements of Co and Sb, displayed a value of 265(2) K, meaning that the application of the harmonic Debye theory underestimates the Debye temperature in skutterudites. Regarding the Gd atom, its intrinsic disorder value was similar to 5x and similar to 25x higher than those of the Co and Sb, respectively, denoting that Gd has a strong rattling behavior with an Einstein temperature of theta(E) = 67(2) K. As a result, an ultra-low thermal conductivity of 0.89 W/m center dot K at 773 K was obtained, leading to a thermoelectric efficiency zT of 0.5 at 673 K

    Modified magnetic anisotropy at LaCoO_(3)/La_(0.7)Sr_(0.3)MnO_(3) interfaces

    Get PDF
    Controlling magnetic anisotropy is an important objective towards engineering novel magnetic device concepts in oxide electronics. In thin film manganites, magnetic anisotropy is weak and it is primarily determined by the substrate, through induced structural distortions resulting from epitaxial mismatch strain. On the other hand, in cobaltites, with a stronger spin orbit interaction, magnetic anisotropy is typically much stronger. In this paper, we show that interfacing La0.7Sr0.3MnO3 (LSMO) with an ultrathin LaCoO3 (LCO) layer drastically modifies the magnetic anisotropy of the manganite, making it independent of the substrate and closer to the magnetic isotropy characterizing its rhombohedral structure. Ferromagnetic resonance measurements evidence a tendency of manganite magnetic moments to point out-of-plane suggesting non collinear magnetic interactions at the interface. These results may be of interest for the design of oxide interfaces with tailored magnetic structures for new oxide devices
    corecore