632 research outputs found

    Coherent control of magnetization precession in ferromagnetic semiconductor (Ga,Mn)As

    Full text link
    We report single-color, time resolved magneto-optical measurements in ferromagnetic semiconductor (Ga,Mn)As. We demonstrate coherent optical control of the magnetization precession by applying two successive ultrashort laser pulses. The magnetic field and temperature dependent experiments reveal the collective Mn-moment nature of the oscillatory part of the time-dependent Kerr rotation, as well as contributions to the magneto-optical signal that are not connected with the magnetization dynamics.Comment: 6 pages, 3 figures, accepted in Applied Physics Letter

    Laser-induced Precession of Magnetization in GaMnAs

    Full text link
    We report on the photo-induced precession of the ferromagnetically coupled Mn spins in (Ga,Mn)As, which is observed even with no external magnetic field applied. We concentrate on various experimental aspects of the time-resolved magneto-optical Kerr effect (TR-MOKE) technique that can be used to clarify the origin of the detected signals. We show that the measured data typically consist of several different contributions, among which only the oscillatory signal is directly connected with the ferromagnetic order in the sample.Comment: 4 pages, 5 figure

    UWB Propagation through Walls

    Get PDF
    The propagation of ultra wide band (UWB) signals through walls is analyzed. For this propagation studies, it is necessary to consider not only propagation at a single frequency but in the whole band. The UWB radar output signal is formed by both transmitter and antenna. The effects of antenna receiving and transmitting responses for various antenna types (such as small and aperture antennas) are studied in the frequency as well as time domain. Moreover, UWB radar output signals can be substantially affected due to electromagnetic wave propagation through walls and multipath effects

    Spin-dependent phenomena and device concepts explored in (Ga,Mn)As

    Full text link
    Over the past two decades, the research of (Ga,Mn)As has led to a deeper understanding of relativistic spin-dependent phenomena in magnetic systems. It has also led to discoveries of new effects and demonstrations of unprecedented functionalities of experimental spintronic devices with general applicability to a wide range of materials. In this article we review the basic material properties that make (Ga,Mn)As a favorable test-bed system for spintronics research and discuss contributions of (Ga,Mn)As studies in the general context of the spin-dependent phenomena and device concepts. Special focus is on the spin-orbit coupling induced effects and the reviewed topics include the interaction of spin with electrical current, light, and heat.Comment: 47 pages, 41 figure
    corecore