36 research outputs found

    Predicting and Explaining Human Semantic Search in a Cognitive Model

    Full text link
    Recent work has attempted to characterize the structure of semantic memory and the search algorithms which, together, best approximate human patterns of search revealed in a semantic fluency task. There are a number of models that seek to capture semantic search processes over networks, but they vary in the cognitive plausibility of their implementation. Existing work has also neglected to consider the constraints that the incremental process of language acquisition must place on the structure of semantic memory. Here we present a model that incrementally updates a semantic network, with limited computational steps, and replicates many patterns found in human semantic fluency using a simple random walk. We also perform thorough analyses showing that a combination of both structural and semantic features are correlated with human performance patterns.Comment: To appear in proceedings for CMCL 201

    The Interaction of Memory and Attention in Novel Word Generalization: A Computational Investigation

    Get PDF
    People exhibit a tendency to generalize a novel noun to the basic-level in a hierarchical taxonomy -- a cognitively salient category such as "dog" -- with the degree of generalization depending on the number and type of exemplars. Recently, a change in the presentation timing of exemplars has also been shown to have an effect, surprisingly reversing the prior observed pattern of basic-level generalization. We explore the precise mechanisms that could lead to such behavior by extending a computational model of word learning and word generalization to integrate cognitive processes of memory and attention. Our results show that the interaction of forgetting and attention to novelty, as well as sensitivity to both type and token frequencies of exemplars, enables the model to replicate the empirical results from different presentation timings. Our results reinforce the need to incorporate general cognitive processes within word learning models to better understand the range of observed behaviors in vocabulary acquisition

    Simple Search Algorithms on Semantic Networks Learned from Language Use

    Get PDF
    Recent empirical and modeling research has focused on the semantic fluency task because it is informative about semantic memory. An interesting interplay arises between the richness of representations in semantic memory and the complexity of algorithms required to process it. It has remained an open question whether representations of words and their relations learned from language use can enable a simple search algorithm to mimic the observed behavior in the fluency task. Here we show that it is plausible to learn rich representations from naturalistic data for which a very simple search algorithm (a random walk) can replicate the human patterns. We suggest that explicitly structuring knowledge about words into a semantic network plays a crucial role in modeling human behavior in memory search and retrieval; moreover, this is the case across a range of semantic information sources

    Learning Hierarchical Visual Representations in Deep Neural Networks Using Hierarchical Linguistic Labels

    Full text link
    Modern convolutional neural networks (CNNs) are able to achieve human-level object classification accuracy on specific tasks, and currently outperform competing models in explaining complex human visual representations. However, the categorization problem is posed differently for these networks than for humans: the accuracy of these networks is evaluated by their ability to identify single labels assigned to each image. These labels often cut arbitrarily across natural psychological taxonomies (e.g., dogs are separated into breeds, but never jointly categorized as "dogs"), and bias the resulting representations. By contrast, it is common for children to hear both "dog" and "Dalmatian" to describe the same stimulus, helping to group perceptually disparate objects (e.g., breeds) into a common mental class. In this work, we train CNN classifiers with multiple labels for each image that correspond to different levels of abstraction, and use this framework to reproduce classic patterns that appear in human generalization behavior.Comment: 6 pages, 4 figures, 1 table. Accepted as a paper to the 40th Annual Meeting of the Cognitive Science Society (CogSci 2018

    Weakly-Supervised Learning of Visual Relations in Multimodal Pretraining

    Full text link
    Recent work in vision-and-language pretraining has investigated supervised signals from object detection data to learn better, fine-grained multimodal representations. In this work, we take a step further and explore how we can tap into supervision from small-scale visual relation data. In particular, we propose two pretraining approaches to contextualise visual entities in a multimodal setup. With verbalised scene graphs, we transform visual relation triplets into structured captions, and treat them as additional image descriptions. With masked relation prediction, we further encourage relating entities from image regions with visually masked contexts. When applied to strong baselines pretrained on large amounts of Web data, zero-shot evaluations on both coarse-grained and fine-grained tasks show the efficacy of our methods in learning multimodal representations from weakly-supervised relations data.Comment: EMNLP 202

    Pragmatics in Language Grounding: Phenomena, Tasks, and Modeling Approaches

    Full text link
    People rely heavily on context to enrich meaning beyond what is literally said, enabling concise but effective communication. To interact successfully and naturally with people, user-facing artificial intelligence systems will require similar skills in pragmatics: relying on various types of context -- from shared linguistic goals and conventions, to the visual and embodied world -- to use language effectively. We survey existing grounded settings and pragmatic modeling approaches and analyze how the task goals, environmental contexts, and communicative affordances in each work enrich linguistic meaning. We present recommendations for future grounded task design to naturally elicit pragmatic phenomena, and suggest directions that focus on a broader range of communicative contexts and affordances.Comment: Findings of EMNLP 202

    A Systematic Investigation of Commonsense Knowledge in Large Language Models

    Full text link
    Language models (LMs) trained on large amounts of data have shown impressive performance on many NLP tasks under the zero-shot and few-shot setup. Here we aim to better understand the extent to which such models learn commonsense knowledge -- a critical component of many NLP applications. We conduct a systematic and rigorous zero-shot and few-shot commonsense evaluation of large pre-trained LMs, where we: (i) carefully control for the LMs' ability to exploit potential surface cues and annotation artefacts, and (ii) account for variations in performance that arise from factors that are not related to commonsense knowledge. Our findings highlight the limitations of pre-trained LMs in acquiring commonsense knowledge without task-specific supervision; furthermore, using larger models or few-shot evaluation are insufficient to achieve human-level commonsense performance.Comment: Accepted to EMNLP 202
    corecore