1,851 research outputs found

    Associations of pubertal stage and body mass index with cardiometabolic risk in Hong Kong Chinese children: A cross-sectional study

    Get PDF
    Background: Puberty is associated with a clustering of cardiometabolic risk factors (CMRFs) during adolescence that are manifested in later life. Although anthropometric variables such as body mass index (BMI) can predict cardiometabolic risk in children and adolescents, it is not clear whether there is an interaction between pubertal stage and BMI associated with cardiometabolic risk in this age group. This paper examines the association of pubertal stage and BMI with CMRFs in Hong Kong Chinese children. Methods: A cross-sectional school-based study was conducted among 1985 (95.1%) students aged 6 to 18 years. Fasting lipid profile and plasma glucose, blood pressure, body weight, body height and waist circumference were measured. A self-reported pubertal stage questionnaire was used to assess pubertal stage of participants. Two cardiometabolic risk scores, alpha and beta, were constructed to quantify cardiometabolic risk. Cardiometabolic risk score alpha refers to the sum of z-scores of sex-specific, age-adjusted waist circumference, height-adjusted systolic and diastolic blood pressure, fasting plasma glucose, triglyceride and low-density lipoprotein cholesterol, and minus z-score of sex-specific age-adjusted high-density lipoprotein cholesterol. Cardiometabolic risk score beta includes all components of risk score alpha except waist circumference. Results: The interaction of BMI z-score (ZBMI) and pubertal stage demonstrated a significant increase in variance explained in cardiometabolic risk score alpha in boys (0.5%, p = 0.024) and girls (0.7%, p = 0.006) and in cardiometabolic risk score beta in boys (0.8%, p = 0.030) but not in girls (0.5%, p = 0.051). Conclusions: Pubertal stage has an interaction effect on the association of cardiometabolic risk by BMI in boys and may have a similar but lesser effect in girls.published_or_final_versio

    Vestibular, Cognitive, Oculomotor, and Athletic Performance in Eligible Female Collegiate Soccer and Lacrosse Players

    Get PDF
    Background Due to the nature of their sports, soccer and lacrosse athletes are at risk for repeated head impacts. Repeated head impacts may influence the athletes’ vestibular function, cognitive function, or athletic performance. Purpose Determine if athletes are fully participating in practices and games with vestibular, cognitive, or athletic performance abnormalities . Participants 30 student athletes from Concordia University in St. Paul, MN Tests Performed Instrumented Dynamic Visual Acuity (iDVA) Clinical Dynamic Visual Acuity (cDVA) Trail Making Test A & B (TMT A/B) Near Point Convergence (NPC) Performance Tests: T Test Agility Drill, 40 yard dash (with and without head turns) Results 15/30 participants tested abnormally on an administered test. The TMT A/B and T test agility drill showed no significant difference compared to published norms and between groups (athletes with normal vs. abnormal vestibular tests) The 40 yard dash results showed no significant differences between athletes with normal vs. abnormal vestibular tests. Conclusion Half of the participants demonstrated abnormal vestibular tests yet are still fully participating in their sport. Despite high numbers of abnormal vestibular tests, the presumed dysfunctions did not impact physical performance as measured in this study. Absence of concussion diagnosis does not discount abnormal vestibular, cognitive, or athletic performance. Clinical Relevance to Physical Therapy Profession and Practice More research is necessary to find a method to properly stress the vestibular system during athletically simulated activities in high level athletes. Our results may influence screening and return to play guidelines. Standardized norms for certain vestibular, oculomotor, and cognitive tests need to be adjusted to reflect the ability of high level athletes

    Treatment of an Intramammary Bacterial Infection with 25-Hydroxyvitamin D3

    Get PDF
    Deficiency of serum levels of 25-hydroxyvitamin D3 has been correlated with increased risk of infectious diseases such as tuberculosis and influenza. A plausible reason for this association is that expression of genes encoding important antimicrobial proteins depends on concentrations of 1,25-dihydroxyvitamin D3 produced by activated immune cells at sites of infection, and that synthesis of 1,25-dihydroxyvitamin D3 is dependent on the availability of 25-hydroxyvitamin D3. Thus, increasing the availability of 25(OH)D3 for immune cell synthesis of 1,25-dihydroxyvitamin D3 at sites of infection has been hypothesized to aid in clearance of the infection. This report details the treatment of an acute intramammary infection with infusion of 25-hydroxyvitamin D3 to the site of infection. Ten lactating cows were infected with in one quarter of their mammary glands. Half of the animals were treated intramammary with 25-hydroxyvitamin D3. The 25-hydroxyvitamin D3 treated animal showed significantly lower bacterial counts in milk and showed reduced symptomatic affects of the mastitis. It is significant that treatment with 25-hydroxyvitamin D3 reduced the severity of an acute bacterial infection. This finding suggested a significant non-antibiotic complimentary role for 25-hydroxyvitamin D3 in the treatment of infections in compartments naturally low in 25-hydroxyvitamin D3 such as the mammary gland and by extension, possibly upper respiratory tract infections

    OSTα deficiency: A disorder with cholestasis, liver fibrosis and congenital diarrhea

    Get PDF
    Solute carrier family 51 alpha subunit (SLC51A ) encodes the alpha subunit of the heteromeric organic solute transporter alpha–beta (OSTα–OSTβ), an important contributor to intestinal bile acid (BA) reabsorption in the enterohepatic circulation.1, 2 Here, we identified the first case of OSTα deficiency in a child with unexplained elevated liver transaminases, cholestasis, and congenital diarrhea

    Eosinophil and T Cell Markers Predict Functional Decline in COPD Patients

    Get PDF
    BACKGROUND. The major marker utilized to monitor COPD patients is forced expiratory volume in one second (FEV1). However, asingle measurement of FEV1 cannot reliably predict subsequent decline. Recent studies indicate that T lymphocytes and eosinophils are important determinants of disease stability in COPD. We therefore measured cytokine levels in the lung lavage fluid and plasma of COPD patients in order to determine if the levels of T cell or eosinophil related cytokines were predictive of the future course of the disease. METHODS. Baseline lung lavage and plasma samples were collected from COPD subjects with moderately severe airway obstruction and emphysematous changes on chest CT. The study participants were former smokers who had not had a disease exacerbation within the past six months or used steroids within the past two months. Those subjects who demonstrated stable disease over the following six months (ΔFEV1 % predicted = 4.7 ± 7.2; N = 34) were retrospectively compared with study participants who experienced a rapid decline in lung function (ΔFEV1 % predicted = -16.0 ± 6.0; N = 16) during the same time period and with normal controls (N = 11). Plasma and lung lavage cytokines were measured from clinical samples using the Luminex multiplex kit which enabled the simultaneous measurement of several T cell and eosinophil related cytokines. RESULTS AND DISCUSSION. Stable COPD participants had significantly higher plasma IL-2 levels compared to participants with rapidly progressive COPD (p = 0.04). In contrast, plasma eotaxin-1 levels were significantly lower in stable COPD subjects compared to normal controls (p < 0.03). In addition, lung lavage eotaxin-1 levels were significantly higher in rapidly progressive COPD participants compared to both normal controls (p < 0.02) and stable COPD participants (p < 0.05). CONCLUSION. These findings indicate that IL-2 and eotaxin-1 levels may be important markers of disease stability in advanced emphysema patients. Prospective studies will need to confirm whether measuring IL-2 or eotaxin-1 can identify patients at risk for rapid disease progression.National Heart, Lung, and Blood Institute (NO1-HR-96140, NO1-HR-96141-001, NO1-HR-96144, NO1-HR-96143; NO1-HR-96145; NO1-HR-96142, R01HL086936-03); The Flight Attendant Medical Research Institute; the Jo-Ann F. LeBuhn Center for Chest Diseas

    Matrix metalloproteinase-9 activity and a downregulated Hedgehog pathway impair blood-brain barrier function in an <i>in vitro</i> model of CNS tuberculosis

    Get PDF
    Central nervous system tuberculosis (CNS TB) has a high mortality and morbidity associated with severe inflammation. The blood-brain barrier (BBB) protects the brain from inflammation but the mechanisms causing BBB damage in CNS TB are uncharacterized. We demonstrate that Mycobacterium tuberculosis (Mtb) causes breakdown of type IV collagen and decreases tight junction protein (TJP) expression in a co-culture model of the BBB. This increases permeability, surface expression of endothelial adhesion molecules and leukocyte transmigration. TJP breakdown was driven by Mtb-dependent secretion of matrix metalloproteinase (MMP)-9. TJP expression is regulated by Sonic hedgehog (Shh) through transcription factor Gli-1. In our model, the hedgehog pathway was downregulated by Mtb-stimulation, but Shh levels in astrocytes were unchanged. However, Scube2, a glycoprotein regulating astrocyte Shh release was decreased, inhibiting Shh delivery to brain endothelial cells. Activation of the hedgehog pathway by addition of a Smoothened agonist or by addition of exogenous Shh, or neutralizing MMP-9 activity, decreased permeability and increased TJP expression in the Mtb-stimulated BBB co-cultures. In summary, the BBB is disrupted by downregulation of the Shh pathway and breakdown of TJPs, secondary to increased MMP-9 activity which suggests that these pathways are potential novel targets for host directed therapy in CNS TB
    corecore