49,648 research outputs found

    Distributed estimation from relative measurements of heterogeneous and uncertain quality

    Get PDF
    This paper studies the problem of estimation from relative measurements in a graph, in which a vector indexed over the nodes has to be reconstructed from pairwise measurements of differences between its components associated to nodes connected by an edge. In order to model heterogeneity and uncertainty of the measurements, we assume them to be affected by additive noise distributed according to a Gaussian mixture. In this original setup, we formulate the problem of computing the Maximum-Likelihood (ML) estimates and we design two novel algorithms, based on Least Squares regression and Expectation-Maximization (EM). The first algorithm (LS- EM) is centralized and performs the estimation from relative measurements, the soft classification of the measurements, and the estimation of the noise parameters. The second algorithm (Distributed LS-EM) is distributed and performs estimation and soft classification of the measurements, but requires the knowledge of the noise parameters. We provide rigorous proofs of convergence of both algorithms and we present numerical experiments to evaluate and compare their performance with classical solutions. The experiments show the robustness of the proposed methods against different kinds of noise and, for the Distributed LS-EM, against errors in the knowledge of noise parameters.Comment: Submitted to IEEE transaction

    What is the Brillouin Zone of an Anisotropic Photonic Crystal?

    Get PDF
    The concept of the Brillouin zone (BZ) in relation to a photonic crystal fabricated in an optically anisotropic material is explored both experimentally and theoretically. In experiment, we used femtosecond laser pulses to excite THz polaritons and image their propagation in lithium niobate and lithium tantalate photonic crystal (PhC) slabs. We directly measured the dispersion relation inside PhCs and observed that the lowest bandgap expected to form at the BZ boundary forms inside the BZ in the anisotropic lithium niobate PhC. Our analysis shows that in an anisotropic material the BZ - defined as the Wigner-Seitz cell in the reciprocal lattice - is no longer bounded by Bragg planes and thus does not conform to the original definition of the BZ by Brillouin. We construct an alternative Brillouin zone defined by Bragg planes and show its utility in identifying features of the dispersion bands. We show that for an anisotropic 2D PhC without dispersion, the Bragg plane BZ can be constructed by applying the Wigner-Seitz method to a stretched or compressed reciprocal lattice. We also show that in the presence of the dispersion in the underlying material or in a slab waveguide, the Bragg planes are generally represented by curved surfaces rather than planes. The concept of constructing a BZ with Bragg planes should prove useful in understanding the formation of dispersion bands in anisotropic PhCs and in selectively tailoring their optical properties.Comment: 9 pages, 6 figure

    A model metal potential exhibiting polytetrahedral clusters

    Full text link
    Putative global minima have been located for clusters interacting with an aluminium glue potential for N<190. Virtually all the clusters have polytetrahedral structures, which for larger sizes involve an ordered array of disclinations that are similar to those in the Z, H and sigma Frank-Kasper phases. Comparisons of sequences of larger clusters suggest that the majority of the global minima will adopt the bulk face-centred-cubic structure beyond N=500.Comment: 14 pages, 7 figure

    A Physical Theory of the Competition that Allows HIV to Escape from the Immune System

    Full text link
    Competition within the immune system may degrade immune control of viral infections. We formalize the evolution that occurs in both HIV-1 and the immune system quasispecies. Inclusion of competition in the immune system leads to a novel balance between the immune response and HIV-1, in which the eventual outcome is HIV-1 escape rather than control. The analytical model reproduces the three stages of HIV-1 infection. We propose a vaccine regimen that may be able to reduce competition between T cells, potentially eliminating the third stage of HIV-1.Comment: 5 pages, 2 figures, to appear in Phys. Rev. Let

    Orientational correlations and the effect of spatial gradients in the equilibrium steady state of hard rods in 2D : A study using deposition-evaporation kinetics

    Get PDF
    Deposition and evaporation of infinitely thin hard rods (needles) is studied in two dimensions using Monte Carlo simulations. The ratio of deposition to evaporation rates controls the equilibrium density of rods, and increasing it leads to an entropy-driven transition to a nematic phase in which both static and dynamical orientational correlation functions decay as power laws, with exponents varying continuously with deposition-evaporation rate ratio. Our results for the onset of the power-law phase agree with those for a conserved number of rods. At a coarse-grained level, the dynamics of the non-conserved angle field is described by the Edwards-Wilkinson equation. Predicted relations between the exponents of the quadrupolar and octupolar correlation functions are borne out by our numerical results. We explore the effects of spatial inhomogeneity in the deposition-evaporation ratio by simulations, entropy-based arguments and a study of the new terms introduced in the free energy. The primary effect is that needles tend to align along the local spatial gradient of the ratio. A uniform gradient thus induces a uniformly aligned state, as does a gradient which varies randomly in magnitude and sign, but acts only in one direction. Random variations of deposition-evaporation rates in both directions induce frustration, resulting in a state with glassy characteristics.Comment: modified version, Accepted for publication in Physical Review

    Mapping the magic numbers in binary Lennard-Jones clusters

    Full text link
    Using a global optimization approach that directly searches for the composition of greatest stability, we have been able to find the particularly stable structures for binary Lennard-Jones clusters with up to 100 atoms for a range of Lennard-Jones parameters. In particular, we have shown that just having atoms of different size leads to a remarkable stabilization of polytetrahedral structures, including both polyicosahedral clusters and at larger sizes structures with disclination lines.Comment: 5 pages, 5 figure
    • …
    corecore