1,079 research outputs found

    Topology, Entropy and Witten Index of Dilaton Black Holes

    Full text link
    We have found that for extreme dilaton black holes an inner boundary must be introduced in addition to the outer boundary to give an integer value to the Euler number. The resulting manifolds have (if one identifies imaginary time) topology S1×R×S2S^1 \times R \times S^2 and Euler number χ=0\chi = 0 in contrast to the non-extreme case with χ=2\chi=2. The entropy of extreme U(1)U(1) dilaton black holes is already known to be zero. We include a review of some recent ideas due to Hawking on the Reissner-Nordstr\"om case. By regarding all extreme black holes as having an inner boundary, we conclude that the entropy of {\sl all} extreme black holes, including [U(1)]2[U(1)]^2 black holes, vanishes. We discuss the relevance of this to the vanishing of quantum corrections and the idea that the functional integral for extreme holes gives a Witten Index. We have studied also the topology of ``moduli space'' of multi black holes. The quantum mechanics on black hole moduli spaces is expected to be supersymmetric despite the fact that they are not HyperK\"ahler since the corresponding geometry has torsion unlike the BPS monopole case. Finally, we describe the possibility of extreme black hole fission for states with an energy gap. The energy released, as a proportion of the initial rest mass, during the decay of an electro-magnetic black hole is 300 times greater than that released by the fission of an 235U{}^{235} U nucleus.Comment: 51 pages, 4 figures, LaTeX. Considerably extended version. New sections include discussion of the Witten index, topology of the moduli space, black hole sigma model, and black hole fission with huge energy releas

    Hydrodynamics of liquids of arbitrarily curved flux-lines and vortex loops

    Full text link
    We derive a hydrodynamic model for a liquid of arbitrarily curved flux-lines and vortex loops using the mapping of the vortex liquid onto a liquid of relativistic charged quantum bosons in 2+1 dimensions recently suggested by Tesanovic and by Sudbo and collaborators. The loops in the flux-line system correspond to particle-antiparticle fluctuations in the bosons. We explicitly incorporate the externally applied magnetic field which in the boson model corresponds to a chemical potential associated with the conserved charge density of the bosons. We propose this model as a convenient and physically appealing starting point for studying the properties of the vortex liquid

    The Effect of Large Amplitude Fluctuations in the Ginzburg-Landau Phase Transition

    Full text link
    The lattice Ginzburg-Landau model in d=3 and d=2 is simulated, for different values of the coherence length ξ\xi in units of the lattice spacing aa, using a Monte Carlo method. The energy, specific heat, vortex density vv, helicity modulus Γμ\Gamma_\mu and mean square amplitude are measured to map the phase diagram on the plane TξT-\xi. When amplitude fluctuations, controlled by the parameter ξ\xi, become large (ξ1\xi \sim 1) a proliferation of vortex excitations occurs changing the phase transition from continuous to first order.Comment: 4 pages, 5 postscript (eps) figure

    Suppressed supersymmetry breaking terms in the Higgs sector

    Full text link
    We study the little hierarchy between mass parameters in the Higgs sector and other SUSY breaking masses. This type of spectrum can relieve the fine-tuning problem in the MSSM Higgs sector. Our scenario can be realized by superconformal dynamics. The spectrum in our scenario has significant implications in other phenomenological aspects like the relic abundance of the lightest neutralino and relaxation of the unbounded-from-below constraints.Comment: 14 pages, late

    A comparison of Noether charge and Euclidean methods for Computing the Entropy of Stationary Black Holes

    Full text link
    The entropy of stationary black holes has recently been calculated by a number of different approaches. Here we compare the Noether charge approach (defined for any diffeomorphism invariant Lagrangian theory) with various Euclidean methods, specifically, (i) the microcanonical ensemble approach of Brown and York, (ii) the closely related approach of Ba\~nados, Teitelboim, and Zanelli which ultimately expresses black hole entropy in terms of the Hilbert action surface term, (iii) another formula of Ba\~nados, Teitelboim and Zanelli (also used by Susskind and Uglum) which views black hole entropy as conjugate to a conical deficit angle, and (iv) the pair creation approach of Garfinkle, Giddings, and Strominger. All of these approaches have a more restrictive domain of applicability than the Noether charge approach. Specifically, approaches (i) and (ii) appear to be restricted to a class of theories satisfying certain properties listed in section 2; approach (iii) appears to require the Lagrangian density to be linear in the curvature; and approach (iv) requires the existence of suitable instanton solutions. However, we show that within their domains of applicability, all of these approaches yield results in agreement with the Noether charge approach. In the course of our analysis, we generalize the definition of Brown and York's quasilocal energy to a much more general class of diffeomorphism invariant, Lagrangian theories of gravity. In an appendix, we show that in an arbitrary diffeomorphism invariant theory of gravity, the ``volume term" in the ``off-shell" Hamiltonian associated with a time evolution vector field tat^a always can be expressed as the spatial integral of taCat^a {\cal C}_a, where Ca=0{\cal C}_a = 0 are the constraints associated with the diffeomorphism invariance.Comment: 29 pages (double-spaced) late

    Solitonic Strings and BPS Saturated Dyonic Black Holes

    Get PDF
    We consider a six-dimensional solitonic string solution described by a conformal chiral null model with non-trivial N=4N=4 superconformal transverse part. It can be interpreted as a five-dimensional dyonic solitonic string wound around a compact fifth dimension. The conformal model is regular with the short-distance (`throat') region equivalent to a WZW theory. At distances larger than the compactification scale the solitonic string reduces to a dyonic static spherically-symmetric black hole of toroidally compactified heterotic string. The new four-dimensional solution is parameterised by five charges, saturates the Bogomol'nyi bound and has nontrivial dilaton-axion field and moduli fields of two-torus. When acted by combined T- and S-duality transformations it serves as a generating solution for all the static spherically-symmetric BPS-saturated configurations of the low-energy heterotic string theory compactified on six-torus. Solutions with regular horizons have the global space-time structure of extreme Reissner-Nordstrom black holes with the non-zero thermodynamic entropy which depends only on conserved (quantised) charge vectors. The independence of the thermodynamic entropy on moduli and axion-dilaton couplings strongly suggests that it should have a microscopic interpretation as counting degeneracy of underlying string configurations. This interpretation is supported by arguments based on the corresponding six-dimensional conformal field theory. The expression for the level of the WZW theory describing the throat region implies a renormalisation of the string tension by a product of magnetic charges, thus relating the entropy and the number of oscillations of the solitonic string in compact directions.Comment: 27 Pages, uses RevTeX (solution for the axion field corrected, erratum to appear in Phys. Rev. D

    Can multi-TeV (top and other) squarks be natural in gauge mediation?

    Full text link
    We investigate whether multi-TeV (1-3 TeV) squarks can be natural in models of gauge mediated SUSY breaking. The idea is that for some boundary condition of the scalar (Higgs and stop) masses, the Higgs (mass)2^2, evaluated at the renormalization scale O(100)\sim O(100) GeV, is not very sensitive to (boundary values of) the scalar masses (this has been called ``focussing'' in recent literature). Then, the stop masses can be multi-TeV without leading to fine-tuning in electroweak symmetry breaking. {\em Minimal} gauge mediation does {\em not} lead to this focussing (for all values of tanβ\tan \beta and the messenger scale): the (boundary value of) the Higgs mass is too small compared to the stop masses. Also, in minimal gauge mediation, the gaugino masses are of the same order as the scalar masses so that multi-TeV scalars implies multi-TeV gauginos (especially gluino) leading to fine-tuning. We discuss ideas to {\em increase} the Higgs mass relative to the stop masses (so that focussing can be achieved) and also to {\em suppress} gaugino masses relative to scalar masses (or to modify the gaugino mass relations) in {\em non-minimal} models of gauge mediation -- then multi-TeV (top and other) squarks can be natural. Specific models of gauge mediation which incorporate these ideas and thus have squarks (and in some cases, the gluino) heavier than a TeV without resulting in fine-tuning are also studied and their collider signals are contrasted with those of other models which have multi-TeV squarks.Comment: LaTeX, 29 pages, 9 eps figures. Replacing an earlier version. In version 3, some references and a minor comment have been added and typos have been correcte
    corecore