

A Deployment Framework for Quality-Sensitive Applications in
Resource-Constrained Dynamic Environments
Citation for published version (APA):
Tabatabaei Nikkhah, S., Geilen, M. C. W., Goswami, D., Koedam, M. L. P. J., Nelson, A. T., & Goossens, K. G.
W. (2021). A Deployment Framework for Quality-Sensitive Applications in Resource-Constrained Dynamic
Environments. In F. Leporati, S. Vitabile, & A. Skavhaug (Eds.), 2021 24th Euromicro Conference on Digital
System Design (DSD) (pp. 212-220). Article 9556434 Institute of Electrical and Electronics Engineers.
https://doi.org/10.1109/DSD53832.2021.00042

DOI:
10.1109/DSD53832.2021.00042

Document status and date:
Published: 11/10/2021

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1109/DSD53832.2021.00042
https://doi.org/10.1109/DSD53832.2021.00042
https://research.tue.nl/en/publications/cfb852df-bdd3-4eeb-9e67-3019337a86b8

A Deployment Framework for Quality-Sensitive
Applications in Resource-Constrained Dynamic

Environments
Shayan Tabatabaei Nikkhah, Marc Geilen, Dip Goswami, Martijn Koedam, Andrew Nelson, and Kees Goossens

Eindhoven University of Technology, the Netherlands
Email: {s.tabatabaei.nikkhah, m.c.w.geilen, d.goswami, m.l.p.j.koedam, a.t.nelson, k.g.w.goossens}@tue.nl

Abstract—Traditional embedded systems and recent platforms
used in emerging computing paradigms (e.g., fog computing)
have resource limits and require their applications and services
to be dynamically added (i.e., deployed) and removed at run-
time. These applications often have non-functional (quality)
requirements (e.g., end-to-end latency) which are only satisfied
when sufficient resources are allocated to them. Hence, a run-time
decision-maker is needed to optimize the deployments, in terms of
resource budgets that are allocated to applications. Additionally,
computing platforms have become heterogeneous in terms of
their resources and the applications they execute. However, the
existing deployment solutions are limited to specific resources
and services. In this paper, we propose a run-time deployment
framework that is more flexible in defining constraints and
optimization goals and works with more heterogeneous resources
and resource models than existing solutions. The framework is
implemented on an embedded platform as a proof of concept.

I. INTRODUCTION

In principle, every single computing platform that exists
has a limited number of resources—even large server farms
in the cloud. However, in practice, a computing platform is
considered resource-constrained when it cannot accommodate
applications and services it executes at their peak resource
usage (e.g., embedded systems, Internet of Things (IoT) de-
vices, fog nodes). These platforms often span a range of het-
erogeneous resources governed by various resource allocation
and arbitration schemes, which complicates their integration
in one system. The complexity arises from the fact that first,
resources are abstracted in different ways based on their types
and arbiters, which complicates model-based operations such
as resource optimizations [1]. Second, resource interfaces are
varied, which makes their coordination and integration in one
system intricate.

The applications these platforms execute often have non-
functional requirements besides their functional ones. These
non-functional requirements—called qualities in this paper—
describe how well an application is required to run [2] (e.g.,
frame rate of processed videos, actuation latency, accuracy
of object detection). Application qualities strongly depend
on the type and quantity of resources that are allocated to
applications [3]. Generally, the larger the resource budget
an application gets, the higher its quality levels are. Finding
the relation between quality levels and resource budgets is
not always trivial; however, profiling tools (e.g., [4]) can
be used to empirically or analytically extract models and/or

discrete application profiles. To ensure desired quality levels,
the resource requirements must be compared to provisioned
resource budgets—called budget matching in this paper. In
a heterogeneous environment, both provisioned and required
budgets are expressed at various abstractions levels [5], each
suitable for certain needs (e.g. real-time worst-case, average
guarantees, best-effort budgets). More concrete and detailed
budgets provide finer guarantees on application behavior but
it is harder (i.e., less likely) to find a match for them on the
platform. Since applications – IoT services for instance – are
not similar in their required guarantees and specificity, support
of various budget abstractions is necessary for today’s systems.

Given the light-weight nature of embedded systems, as an
example of resource-constrained platforms, only a subset of
applications can execute on the system at a time and when
tasks are no longer needed, they are removed. This dynamic
presence of tasks is also seen in other contexts such as fog
computing and IoT where services are dynamically deployed
on fog nodes and edge devices [6], [7]. Application deploy-
ment includes the entire process required to prepare a software
application to run and operate in a specific environment.
Dynamic deployments necessitate a run-time decision-making
engine to plan deployments, in terms of resources on which
applications are mapped and budgets that are allocated to
them, in such a way that application quality requirements are
met and deployment costs are minimized. Adhoc optimization
algorithms are suitable for certain settings and possibly require
major modifications when new types of applications and
resources are added to the environment. Given the high rate of
diversification in today’s systems, more generic optimization
algorithms with high customizability are desired. Additionally,
the deployment process requires interacting with heteroge-
neous resources whose interfaces are often varied. Having a
unified interface improves the extensibility of platforms with
new resources.

Emerging computing paradigms, such as IoT and fog com-
puting, have led to many studies on application and service
deployments. However, most are designed and developed for
certain infrastructures and application domains. Since trends
point towards heterogeneity of applications and resources,
increasing the flexibility, extensibility, and genericity of de-
ployment frameworks is vital. To address such growing needs,
we contribute the following developments in this paper:

• A new orchestration and management framework that is
built based on a generic component model (which widens
the types of applications and resources it handles), runs
on top of resource-constrained platforms, and automates
the deployment of quality-sensitive applications at run-
time (Section III).

• A pipelined, distributed deployment flow (which im-
proves the system responsiveness) leveraging a simple
unified interface to interact with the infrastructure and
perform resource management—whereby new resources
can be added to the system by implementing a few
functions (Section V).

• A generic Pareto algebraic decision-making engine, to
plan deployments, whose optimization goals and con-
straints are easily extensible and customizable—which
alleviates the effort needed to adapt the system to a new
scenario (Section VI).

• Support of various existing resource models, the ability to
easily extend the supported resources and abstractions (by
only implementing three operators), considering hierar-
chical budgets, and allowing applications and resources to
be abstracted differently enabling a more flexible budget
matching (Section VI).

• A portable implementation and evaluation of the frame-
work on an embedded platform and a PC (Sections IV
and VII).

The rest of the paper is organized as follows. Section II
discusses the related work. An overview of the proposed
framework is presented in Section III. The case-study that
is used to evaluate the framework is introduced in Section
IV. The steps taken to deploy applications are outlined in
Section V, and the brokering step is elaborated in Section VI.
The framework is evaluated in Section VII and, Section VIII
concludes the paper.

II. RELATED WORKS

While container-based deployment is a promising and pro-
liferating technique [8], a study on the applicability of contain-
ers to real-time domains has shown that they are not mature
enough for this purpose yet [9], which necessitates the use
of other middlewares, such as the one introduced in [10].
This makes the existing container deployment frameworks
inadequate for quality-sensitive applications with stringent
requirements. A deployment framework for cloud distributed
applications is proposed in [11] where abstractions for hard-
ware/software resources and middlewares are employed for
both development and deployment of cloud services. The
framework addresses the heterogeneity of middlewares by
using a unified API to perform the common middleware
functionalities such as creation and termination of Virtual
Machines (VMs). However, VM hardware is abstracted with
only three types (based on the type and number of resources)
which are too abstract for some settings such as real-time sys-
tems because they cannot capture different arbiters, memory
allocation schemes, I/O bandwidth, etc.

A software architecture for dynamic loading of time-critical
applications on multiprocessor platforms is proposed in [10].
While the proposed solution supports a few abstractions for
the considered resources, the budgets are specific for the con-
sidered platform and resources. Additionally, applications and
resources have single configurations and the architecture lacks
a run-time optimization engine. The middleware proposed in
[12] is built on top of a general-purpose component model
and performs dynamic QoS-aware deployment and reconfig-
uration of multi-mode, periodic applications in a distributed
infrastructure. The composition algorithm used to optimize
resource allocations performs a schedulability test which is
based on Response Time Analysis. However, the analysis
only considers the processing budget and it is based on static
application priorities and their WCET, which limits the type
of applications and resources the middleware can manage.

A resource orchestration framework for a sensor-rich mobile
computing platform with scarce resources is proposed in [13].
The framework takes high-level quality requirements and se-
lects the best combination of resources to execute applications.
Although the framework deals with dynamic requests in a
dynamic environment with scarce resources, it is static in
terms of tasks it executes. Also, the employed budget models
are relatively simple, making the framework suitable only for
applications with soft requirements.

The container deployment algorithm proposed in [14] tar-
gets heterogeneous clusters and formulates the deployment
problem as a vector bin packing problem where the multi-
resource guarantee is the primary requirement. Although the
proposed approach does not put any constraints on the types
of resources, there is no discussion on budget models and the
impacts of abstractions on deployments.

An open-source framework – called TORCH – for the
deployment and orchestration of containerized cloud applica-
tions is proposed in [15]. Applications are described using
the TOSCA standard models. A unified deployment API is
exposed to the users and proprietary cloud APIs are hidden
from them. Software connectors can be developed to connect
any cloud provider with possibly different container-based
technologies to the framework. While the framework advo-
cates the need for genericity and flexibility by targeting any
containerized application and any container-based platform, it
is not suitable for deploying quality-sensitive applications in
embedded or fog/edge scenarios where other types of mid-
dlewares, deployment technologies, and more detailed budget
models are needed.

DIANE [6] is a framework to deploy IoT cloud applications
on a cloud infrastructure and IoT gateways. DIANE takes
application descriptions and artifacts from users and, upon
deployment requests, instantiates them such that deployment
constraints – including hardware and software constraints –
comply with the mapped infrastructure. While the framework
is generic in applications and infrastructure, it lacks an opti-
mization engine, and it only filters out the resources that are
not matched with the deployment constraints. Also, it is not
discussed how the constraints are checked and to what extent

Execution Platform

Resource Resource...

Application

Task Task...

VEP

VR VR...

Orchestrator

Broker

EPM

ADB

RDB

VDB

AM

RM

⑧ allocate budget & set
params

⓪ insert(app_bundle)

③ query(app_id)

② <<app_id,
constraints>>

④ <<vep_id>>

⑤ deploy(vep_id)

⑦ create(vr_id, req budg, params)

① deploy(app_id, constraints)

❶ stop(vep_id)

⓪ register(app_bundle)

⑨,❻ <<remaining budget>>

④ reserve vep

⑩ load(vr_id, init_state)
⑪ load the vep

③ query(ep)

④
insert(vep_bundle)

⑥,❸ query(vep_id)

⑩,❼ update

⑫ configure(app_params)

⑬ configures the app

⑧ vep is created ⑪ application is instantiated
❷ stop(vep_id)

❹ destroy(vr_id)
❺ deallocate budget

& reset

❼ remove(vr_id)

OrchestrationOperation Management

Resource/application‐specific API
Orchestration API

“Runs on”

“Hosts”

❸ stop

(a) The architecture of the proposed framework and the deployment flow.

"components":
[
 {
 "id" : "Task1",
 "configurations":
 [{
 "inputs":[{"raw_frames" : "30Hz"}, ...],
 "outputs":["processed_frames" : "30Hz"}, ...],
 "parameters":[{"resolution" : "720p"}, ...],
 "qualities":[{"framerate" : 30}, ...],
 "required_budget”:
 {
 "TILE": { "RISCV":
 [{

 "unit" : "cycles",
 "type" : "average_rate",
 "value" : 100K

 },… // other services from RISCV
], … // other resources from TILE

}, ... // other resources besides TILE
 },
 "initial_state":[{"IDMEM" : "…/task1.hex"}, ...]
 }, … // other application configurations
]}, … // other components
],
"compositions":
[
 "App1 = Task1 => Task2",
 ...
]

Component

Provided Budget
Parameters Qualities

Required Budget

OutputsInputs

(b) Component model and bundle.

Fig. 1: Overview of the proposed framework.

they can be heterogeneous. In addition, it is not discussed
how much effort is needed to integrate new heterogeneous
platforms into the framework.

The run-time resource management framework proposed
in [16] deploys applications with mixed and time-varying
requirements on multi-core Linux systems. The framework,
which is called BarbequeRTRM, finds the optimum application
configurations and their mappings at run-time by considering
non-functional aspects of both applications and resources.
While the framework does not put any constraints on the
type of applications and resources, application budget mod-
els and the API to communicate with the platform are not
discussed, making the platform suitable only for the consid-
ered infrastructure. BarbequeRTRM is employed in [17] to
perform resource management in heterogeneous computing
platforms. Even though more complex computing settings can
be managed by this framework, it lacks the support of various
budget abstractions for one resource, reducing the flexibility
of application profiling.

An extensive study on the service placement problem in
fog and edge computing is done in [18] which shows that
a great number of solutions are proposed to solve this prob-
lem; however, they are too specific in terms of optimization
objectives/constraints and considered resources. Additionally,
their budget models are relatively simple and not suitable
for scenarios where more detailed and complicated models
are needed (e.g., hard real-time systems). Such models must
be integrated into the model-driven operations (e.g., run-time
service placement) which is not possible in some of the
proposed optimization engines such as ILP-based solutions
[19], [20]. Also, consolidating various resource abstractions
in one framework has been not studied. Similarly, a survey on

run-time task mapping on multi/many-core systems is done
in [21]. However, the proposed solutions only deal with fixed
budget models and optimization criteria. They also enforce the
application resource requirements to be expressed in the form
that resource arbiters operate with—reducing the mapping
flexibility.

In sum, the heterogeneity of resources and applications in
the emerging computing paradigms necessitates more generic
and flexible middlewares to automate the deployment pro-
cess. Additionally, quality-sensitive applications – such as
real-time applications – require certain guarantee levels on
resource budgets to fulfill their non-functional requirements.
However, given the heterogeneity of applications, the required
guarantee levels are not identical for all the applications
targeting a platform. Similarly, depending on the types of
resources and their arbitration schemes, platform resources do
not offer similar guarantee levels on the budgets they provide.
The existing deployment frameworks are mostly designed for
specific applications and resources and also do not consider
multiple budget abstractions for one resource type. Leveraging
a generic Pareto optimization engine and component model,
we propose a deployment framework that supports any type
of resource budget and application quality as long as their
ordering and addition/subtraction are defined. Additionally, it
allows applications and resources to be abstracted differently,
leading to a more flexible application-to-resource binding.
Moreover, the framework exploits a simple unified API to
manage the infrastructure, strengthening its portability.

III. OVERVIEW: PROPOSED FRAMEWORK

The architecture of the proposed framework and the deploy-
ment flow are depicted in Fig. 1a. The framework contains

three layers (from left to right), namely i) operation, ii) man-
agement, and iii) orchestration, which are introduced in the
following.
Operation: This layer contains software and hardware com-
ponents of three types, namely i) Applications, which are
made up of Tasks, ii) Resources that are hardware/software
components on top of which applications execute, and iii) Vir-
tual Resources (VRs) that are spatial and/or temporal resource
partitions to share resources. VRs are often implemented by
schedulers, microkernels, virtualization, or (RT)OS on top of
a hardware resource. Each application runs on a dedicated set
of VRs called a Virtual Execution Platform (VEP) [22]. A
VEP is a hierarchical component containing VR components.
In this framework, we use the component interface model
proposed in [2], shown in Fig. 1b, due to its flexibility in
modeling applications and resources as well as its suitabil-
ity for quality and resource management. In this modeling
framework, each component has one or more configurations
which are determined by component parameters. Component
inputs and outputs model functional aspects of components
while their qualities model the non-functional ones. While
components execute, they require (for their correct function-
ality and satisfying certain quality levels) and/or provide (as
a result of their operation) certain services—called required
and provided budget respectively. Component configurations
are modeled with a set of points defined on Qinputs×Qoutputs×
QreqBudget × QprvBudget × Qqualities × Qparams space where each
dimension is a partially-ordered set (poset) and corresponds
to one of the component interfaces. A partial order represents
how quantities of a component interface are better than, worse
than, or incomparable to other quantities of the same inter-
face. For example, higher application quality levels, smaller
required budgets, and larger provided budgets are considered
better. Deployment based on pre-profiled models, especially
for applications, is necessary to guarantee application qualities.
While adaptive resource allocation reduces the design-time
effort, it diminishes the hardness of guarantees. Three types of
component composition are considered in [2] where the free
composition aggregates all the component interfaces without
connecting any interface to another (e.g., composing multiple
processing cores to model a multi-core platform), the horizon-
tal composition models data dependency between components
by connecting outputs of one component to inputs of another
one (e.g., composing an image decoder task to an image pro-
cessing task), and the vertical composition models application-
to-resource bindings by connecting a required budget of one
component to a provided budget of another component (e.g.,
mapping a task onto a CPU).
Management: The management layer prepares the operation
layer for execution and consists of Application Managers
(AMs) and Resource Managers (RMs). AMs are responsible
for configuring, booting, starting, and stopping applications.
This can be as simple as setting the image resolution or as
complex as booting a virtualized OS. RMs, on the other hand,
monitor resources and perform lifecycle management of VRs
including creating/destroying (by allocating/deallocating bud-

gets), configuring (by setting parameters), initializing/resetting
VRs (by programming resources) [22].
Orchestration: The objective of the operation and man-
agement layers is to realize application deployments, which
includes creating VEPs by partitioning resources, configuring
the VEPs by setting resource parameters (e.g., processor
frequency), initializing the VEPs (e.g., loading applications),
configuring applications (e.g., setting parameters of an im-
age filter), and executing them. Taking these steps requires
knowing the size of resource partitions, application-to-resource
bindings, resource and application parameters, and initial data
of VEPs. All these are determined by the orchestration layer
besides its other objective that is automating the deployment
process. The orchestration part is comprised of several func-
tional blocks briefly discussed in the following.
• The Orchestrator, the entry-point of the framework, accepts

deployment requests and coordinates the operation of other
functional blocks to plan and realize deployments.

• The Broker determines the optimal application deployments
including the optimal component configurations (i.e., appli-
cation and resource configurations) and compositions (e.g.,
VR-to-resource bindings). This is done through the Pareto
optimization described in Section VI.

• The Execution Platform Manager (EPM) coordinates cre-
ation, configuration, and destruction of VEPs by RMs.

• Based on the component types, three databases exist that
store component bundles. A component bundle contains
the model of the component as well as initialization data
required to load component instances with (e.g., application
instructions and data, VM image, hardware parameters).
As shown in Fig. 1b, component models are stored in
the JSON format due to its readability and simplicity.
Each database is composed of two sets, components and
compositions. The former contains bundles of atomic
components (e.g., application tasks) and the latter demon-
strates how composite components (e.g., applications) are
made up of other components (e.g., A1 = T1 => T2,
which means A1 is the horizontal composition of T1 and
T2). A bundle of an atomic component contains a unique
identifier and a set of configurations describing com-
ponent properties.

Distributing the orchestration tasks among multiple func-
tional blocks lets us pipeline deployments, which improves
the responsiveness of the system. Additionally, separation
of resource management and coordination of RMs enables
us to dynamically add resources and their managers to the
system by just hooking RMs to the EPM at run-time (using
Data Distribution Service [23]). This is highly beneficial for
fog/edge settings where extra nodes can be dynamically added
to the system. This paper focuses on the automated flow and
the optimization done in the Broker.

IV. CASE-STUDY

We have implemented our proposed framework on the
embedded platform shown in Fig. 2 as a proof of concept.
The platform (i.e., PYNQ-Z2 board [24]) is comprised of

TABLE I: Required/provided budget of the components used in the case-study.

Component Required/Provided Budget
RISCV RISCV:{(cycles, TDM Table, (period ms:2.5, period SUs:100k, slots:{(5001, 95k)})), (#partitions, int, 3)}
IDMEM IDMEM:{(memory blocks, Mem Table, blocks:{(32768 , 32K),(65536, 32K),(98304, 32K)})}
MEM MEM:{(mem size, int, 16k)}
ARM ARM:{(cycles, rate, (average:600M, max:650M), (os type, broadcast, Linux), (io bps, average rate, 100M)}
DRAM DRAM:{(mem size, int, 250M)}
Sense PL:{TILE:{RISCV:{(cycles, TDM Table, (period ms: 2.5, period SUs: 100K, slots:{(10001, 50K)})), (#partitions, int, 1)},IDMEM{memory blocks,

Mem Table, blocks:{(32768, 32K)}}}, MEM:{mem size, int, 16K}},
PS:{ARM:{(cycles, average rate, 350M), (os type, broadcast, Linux), (io bps, average rate, 50M)}, DRAM:{(mem size, int, 16M)}}

Compute TILE:{RISCV:{(cycles, TDM Slot, (period ms: 5, slot length SUs: 80K),(#partitions, int, 1)}, IDMEM:{(memory blocks, Block size, 64k)}},
MEM:{mem size, int, 2K}}

Actuate TILE:{RISCV:{(cycles, Periodic, (period ms: 4, #SUs: 10K), (#partitions, int, 1)}, IDMEM:{(memory blocks, Block size, 10k)}, Mem:{mem size, int, 2K}}
Log Clow: ARM:{(cycles, average rate, 100M), (os type, broadcast, Linux), (io bps, average rate, 10M)}, DRAM:{(mem size, int, 5M)}

Cmedium: ARM:{(cycles, average rate, 200M), (os type, broadcast, Linux), (io bps, average rate, 20M)}, DRAM:{(mem size, int, 5M)}
Chigh: ARM:{(cycles, average rate, 300M), (os type, broadcast, Linux), (io bps, average rate, 30M)}, DRAM:{(mem size, int, 5M)}

Predict Criscv: TILE:{RISCV:{(cycles, share, 40%), (#partitions, int, 1)}, IDMEM:{(memory blocks, Block size, 64K)}}, Mem:{(mem size, int, 16K)}
Carm: ARM:{(cycles, share, 10%)}, DRAM:{(mem size, int, 10MB)}

two parts, namely i) Processing System (PS) – containing
a dual-core Cortex-A9 processor, memories, and IO devices
– and ii) Programmable Logic (PL)—containing a FPGA
fabric on which three predictable RISC-V processing tiles are
synthesized. The PS runs Ubuntu 18.04, making it suitable
for soft quality requirements, and it partitions its resources
using Linux resource controllers (also known as subsystems,
e.g., cpu, memory, blkio). The PL contains a RT Verintec plat-
form [25], following CompSOC concepts [22]. A microkernel
(called VKERNEL [26]) runs on the processing tiles to create
predictable and composable partitions, making it suitable for
applications that require hard guarantees on resources. The
platform can be powered by either a power supply or a battery.
A synthetic control application is considered where three
tasks (i.e., Sense, Compute, and Actuate) constitute the control
pipeline, the Log task logs the system status, and the Predict
task is used to predict the system inputs to use in the case of
sensing failure. The list of components (i.e., applications and
resources) and their required or provided budget are presented
in Table I. Note that only two components, namely Log and
Predict, have multiple configurations—denoted by C. in the
table. Configurations of the Log task are different in the
logging rate and the Predict task has two different implemen-
tations executable on ARM and RISCV. The framework is
implemented in C++ and the functional blocks use OpenDDS
[23] for their communications—allowing them to be run on
the same or a different platform. The case-study demonstrates
how the control application is deployed at run-time.

PYNQ‐Z2

Programmable Logic (PL) Processing System (PS)

TI
LE
 2

TI
LE
 1

TI
LE
 0

VKERNEL

RISCV
I/DMEM
128KB

MEM0
16KB

MEM1
16KB Cortex‐A9

IMEM
32KB

DMEM
32KB

DRAM
256MB

IO dev

PL‐HRT RM

memory ...blkiocpusetcpu

Orchestrator Broker EPM

PS‐SRT RM

Fig. 2: The embedded platform used for our case-study.

V. AUTOMATED DEPLOYMENT FLOW

As shown in Fig. 1a, the flow is composed of 13 steps
for deploying and 7 steps for stopping an application. The
separation of orchestration and management layers enables
us to execute them on different platforms. For example, we
can run the orchestration layer, which is more computation-
ally intensive, on more powerful resources to speed up the
deployment process. Additionally, in distributed systems, this
design lets us have an RM for each subsystem, enabling
them to operate in parallel and speeding up the deployment
of distributed applications. The orchestration tasks are also
distributed among three functional blocks, pipelining the de-
ployment process. For instance, the deployment (done by
EPM) and brokering of two consecutive deployment requests
can be done in parallel. The deployment steps are explained
in the following.
Deploying Applications: 0 An application deployment starts
with registering the application bundle into the Application
Database (ADB)). This lets users dynamically introduce new
applications to the system. Each application bundle can be
instantiated multiple times independently.
1 Once the bundle is stored in the database, a deployment re-

quest containing the application identifier and deployment con-
straints including set-points for application parameters (e.g.,
image resolution), minimum quality levels (e.g., minimum
frame rate), and maximum deployment costs (e.g., overall
power) is sent to the Orchestrator.
2 , 3 The deployment request is forwarded to the Broker for

deployment planning using the Pareto optimization described
in Section VI. The Broker builds the exploration space by
fetching application and resource bundles from the ADB and
Resource Database (RDB). This ensures that deployments use
the latest system state.
4 The optimization result is a VEP configuration (stored

as a VEP bundle in the Virtual Resource Database, VDB)
containing the optimal application configuration, resources
the application is bound to, their optimal configurations, and
the budget that must be allocated to the VEP. Updating the
VDB is followed by budget reservations done by updating the
remaining budget of resources in the RDB. Since remaining

steps may take time, the status of resources are updated first
to make sure that the subsequent deployment plannings are
done based on the latest state of the system so that they can
be done in parallel (pipelined). Additionally, the Broker sends
the identifier of the reserved VEP (null in case of no feasible
solution) to the Orchestrator. This lets the Orchestrator know
the feasibility of deployment and it can inform the user.
5 In case of a feasible solution, a deployment request

containing the VEP identifier is sent to the EPM.
6 The EPM fetches the VEP bundle from the VDB.
7 It sends VR creation requests to RMs. Requests are sent

per VR and contain an identifier (used for future reference),
the budget that the VR is supposed to provide, and possibly
existing VR parameters to set (e.g., vCPU frequency). Note
that the VR-to-resource bindings are included in the budget.
8 Upon receiving the creation requests, RMs create VRs

using resource-specific southbound APIs (concurrently).
9 Once VRs are created, RMs respond with the remaining

budget of resources expressed in possibly more detailed ab-
stractions to retrieve the possibly lost budget details (explained
in Section VI).
10 The EPM sends loading requests for VRs that require

to be initialized for their operation. Since loading VRs (11)
is often slower than creating them (8), this step is done in
parallel with updating the state of the system (i.e., remaining
budget of resources).
11 Once the VRs are initialized, the application is instantiated

and ready to start.
12 , 13 If the application has parameters to set, the EPM

sends them to the AM and it configures the application using
application-specific interfaces.
Stopping Applications: Stopping entails first asking the AM
to stop the application. Then all steps are reversed, omitting
brokering.

VI. BROKERING: PARETO OPTIMIZATION

As explained in Section V (Steps 3 , 4), the goal of broker-
ing is to determine a VEP configuration such that deployment
constraints are satisfied and a cost function is optimized. To do
so, the component configurations in the bundles are retrieved.
Note that using component configurations that are profiled at
design-time improves the predictability of application qual-
ities at run-time. Adaptive resource management techniques
can be employed to adjust resource allocations at run-time
instead of the design-time profiling; however, they are only
suitable for guaranteeing QoS in long time windows rather
than any arbitrary moment in time, which is necessary for
quality-sensitive applications. The Pareto optimization [27]
is a poset-algebraic expression shown in Eq. 1, where all
the operations are performed on the component interfaces
explained in Section III (e.g., required and provided budgets).
First, parameter constraints (DP) are applied to the application
configuration points (app). Next, a set of VEP candidates are
built where each candidate (vepi) is a component containing all
the resources that the application requires and corresponding

to an application-to-platform binding. All the candidates are
vertically composed to the application (to perform budget
matching) to build a configuration space containing feasible
bindings, deployment costs, and application quality levels.
Note that resource configurations, such as different CPU
operating points realized by dynamic voltage and frequency
scaling, are also considered in this configuration space. Next,
the possibly existing quality (DQ) and cost constraints (DC)
are applied (e.g., desired quality), resulting in a set of Pareto
points. Finally, the Pareto frontier is minimized to one config-
uration (vep*) by considering a certain policy (e.g., workload
balancing) or by arbitrarily picking a point.

vep* = Min(DC ∩DQ ∩ (∪i(vepi ⇑ (app ∩DP)))) (1)

Note that, as shown in Fig. 3, the vertical composition operator
(⇑) requires addition and subtraction operations to be defined
on posets [2] (i.e., component interfaces such as provided
and required budgets). For example, the provided budget of a
vertical composition C2 ⇑ C1 is the summation of the provided
budget of C1 and the residual of their composition, which
is the provided budget of C2 minus the required budget of
C1. Hence, to find the optimal deployment, we need to know
how to i) compare (�), ii) add (+), and iii) subtract (−) two
component interfaces (e.g., required/provided budget), which
makes the framework generic and suitable for heterogeneous
components. To achieve this, all the component interfaces are
modelled with simple (name, value) pairs (e.g., (resolution,
720p)). A partial order is defined on the values of each
quantity type as well as any Cartesian product of component
interfaces. Budgets have an additional hierarchy (encoded as
nested JSON objects). The hierarchical structure lets us model
how the resources are coupled together without adding adhoc
optimization constraints, which is not the case in other works
(e.g., [7], [19]). For example, if we ask for a processing tile
comprised of a processor and a memory, we want them to
be mapped on the same tile; however, asking for a processor
and a memory without the notion of tile does not enforce this
constraint.

An atomic budget is modeled with a (unit, type, value)
tuple specifying the unit of the budget (e.g., cycles for
processing power, bytes for memory capacity), the model of
the budget (e.g., average_rate, TDM_Slot), and quantity
of the budget (e.g., 20% for the CPU share). Similar to names,
units of operands must be identical. Various resource models
and abstractions are proposed in the literature (e.g., Latency-
Rate [28], Service Curves [29]). Budget abstraction is a trade-
off between analysis time and accuracy [29](e.g. overhead).
More specific budgets may be less likely to be granted. Our
framework allows RMs to use specific provided budgets (for
high efficiency) and at the same time allows applications to
require abstract budgets (for mapping flexibility) by auto-
matically converting between abstraction levels of budgets
of the same type. For example, we still can do the budget
matching if an application is profiled with average resource
requirements (e.g., average processing rate) while resources
are abstracted with Time-Division Multiplexing (TDM) tables

𝐶𝐶1

𝐶𝐶2

𝑖𝑖1 𝑜𝑜1

𝑝𝑝1

𝑟𝑟1

𝑥𝑥1𝑞𝑞1

𝑜𝑜2𝑖𝑖2

𝑟𝑟2

𝑝𝑝2
𝑥𝑥2𝑞𝑞2 𝑜𝑜1 + 𝑜𝑜2𝑖𝑖1 + 𝑖𝑖2

𝑝𝑝1 + (𝑝𝑝2−𝑟𝑟1)𝑞𝑞1 + 𝑞𝑞2𝑥𝑥1 + 𝑥𝑥2

𝑟𝑟2
Fig. 3: The vertical composition of two components [2].

[10]. However, this comes at the cost of losing information
when we add/subtract two budgets of different abstractions.
For instance, if the required and provided budgets are ex-
pressed with the number of memory blocks and the address of
blocks respectively, we only know the number of remaining
blocks after subtracting the two budgets—unless we know
how the memory manager allocates blocks to applications.
However, including the allocation policies and implementation
details slows down the optimization process. On top of that, the
allocation algorithms may be proprietary and not be available.
Therefore, we only allow budgets with less or the same details
to be subtracted from (or compared with) other budgets and the
abstraction of the result is similar to the less-detailed budget. In
the allocation phase, RMs refine the abstracted budgets, and to
solve the information loss problem, they report the remaining
budget after allocating/deallocating budgets to/from VRs, and
the RDB is updated with the retrieved abstractions (i.e., Steps
10 and 7 in Fig. 1a).

VII. EXPERIMENTS

A set of deployments, shown in Table II, are considered
to do experiments on the case-study discussed in Section IV.
The experiments aim to illustrate how the brokering works,
evaluate the deployment performance, and demonstrate the
framework’s generality and flexibility. As discussed before,
we use JSON files to store bundles in the databases. The
size of the ADB and RDB for this case-study are 6KB and
10.5KB respectively. Note that bundles contain only references
to the initialization data (e.g., object files, docker images). The
run time of the brokering phase, VEP creations (i.e., budget
allocation and loading VRs), and the total deployment are
reported in Table II. The reported numbers are an average
of 20 samples for each deployment. We have reported two
numbers for the brokering and the total deployment time
which correspond to our two experimental settings. In the first
setting (embedded setting), we run the whole framework on a
PYNQ board, while in the distributed setting, the orchestration

layer runs on a PC. The results show that the brokering run
time is proportional to the number of feasible mappings. The
first deployment, which has the largest brokering time, has
requirements on both the PL & PS and 12 feasible mappings
exist (2 ARM cores, 3 RISCVs, and 2 MEMs per each tile).
On the other hand, brokering the log task (SysStat in the
distributed setting) takes the least time due to its requirement
on only the PS (PC in the distributed setting). VR creations
are faster on the PS because i) the ARM cores are faster than
RISCVs, ii) the RM that manages resources of the PS (PS-
SRT RM) works directly with cgroups, which is reasonably
fast, and iii) the RM that manages resources of the PL (PL-
HRT RM) runs on the ARM, adding extra latency due to the
communication between PL-HRT RM and VKERNEL.

Embedded setting: Initially, the platform is powered by a
battery and the optimization goal is to minimize the power
consumption. For simplicity, we only consider the power con-
sumption of ARM and RISCV cores (with an ARM consuming
more than a RISCV core) and deployment costs relate to the
budgets required from these components. As shown in Table
I, the Sense application is distributed over PL and PS, and
its resource requirement is stated at the same abstraction level
as the implementation (e.g., detailed TDM allocation including
the period of the TDM wheel in both milliseconds and number
of Service Units, e.g., cycles, and a set of TDM slots with
known lengths and starting points) which is necessary for its
correct sensing. Since all the resources provide enough budget
to host this task, there are 12 feasible configurations with
identical costs; hence, one mapping is picked arbitrarily. The
second application is implemented for RISCVs and is profiled
at a higher abstraction level compared to the implementation
(i.e., abstracting the starting point of TDM slots and memory
blocks). Note that in such cases, RMs are responsible to
refine the budgets using their own allocation strategies. In
this experiment, the application asks for 80K cycles in every
5ms and a TDM slot of length 40k starting at the 60001st

cycle and repeating every 2.5ms is allocated to it. The third
deployment, asks for a periodic budget (not necessarily a
TDM one) of 10K cycles in every 4ms. Since the asked
period is different from the period of the TDM wheels, the
RM allocates a slot of length 10K (repeating every 2.5ms)
to guarantee the budget. Additionally, the application asks
for a memory block of 10KB; however, since the memory
is divided into blocks of 32KB, a full block of 32KB is
allocated to the application. Note that this information is
reflected in the RDB after the RM creates VRs and reports its
state (Step 10). While the first three requests did not enforce
any constraints, the fourth request requires the rate of logging
to be at least medium, which removes the first configuration
(i.e., Clow) from the feasible solutions. Given the optimization
goal, the configuration Cmedium is chosen to minimize the
power consumption. After the fourth deployment, a power
supply is connected to the board and the optimization goal
changes to maximizing application qualities. To demonstrate
how this change influences the deployments, we stop (Request

TABLE II: Deployment requests, corresponding optimization results, and deployment time for the embedded/distributed settings.

Request Allocated Budget Brokering Alloc&Load Total
1) deploy(Sense) RISCV 1:{(cpu cycles, TDM Table, (period ms: 2.5, period SUs: 100K, slots:{(10001, 50K)})),

(#partitions, int, 1)},IDMEM 1{memory blocks, Mem Table, blocks:{(32768, 32K)}}},
MEM 01:{mem size, int, 16K}}, ARM:{(cpu cycles, average rate, 200M), (io bps, average rate,
50M)}, DRAM 1:{(mem size, int, 16M)}}

2411ms/69ms 812ms 3.3s/0.96s

2) deploy(Compute) RISCV 1:{(cpu cycles, TDM Slot, (period ms: 2.5, period SUs: 100K, slots:{(60001,
40K)})),(#partitions, int, 1)}, IDMEM 1:{memory blocks, Mem Table, blocks:{(65536, 32K),
(98304, 32K)}}}, MEM 02:{mem size, int, 2K}}

574ms/24ms 893ms 1.9s/1.4s

3) deploy(Actuate) RISCV 2:{(cpu cycles, TDM Slot, (period ms: 2.5, period SUs: 100K, slots:{(5001,
10K)})),(#partitions, int, 1)}, IDMEM 2:{memory blocks, Mem Table, blocks:{(32768, 32K)}}},
MEM 02:{mem size, int, 2K}}

630ms/26ms 740ms 1.9s/1.4s

4) deploy(Log, log rate
≥ medium)

ARM 1:{(cpu cycles, average rate, 200M), (io bps, average rate, 20M)}, DRAM 1:{(mem size, int,
5M)}

328ms/13ms 20ms 0.6s/0.04s

5) stop(Log) - - - 0.2s
6) deploy(Log) ARM 2:{(cpu cycles, average rate, 300M), (io bps, average rate, 30M)}, DRAM 1:{(mem size, int,

5M)}
243ms/12ms 20ms 0.6s/0.04s

7) deploy(Predict) RISCV 3:{(cpu cycles, TDM Slot, (period ms: 2.5, period SUs: 100K, slots:{(5001,
40K)})),(#partitions, int, 1)}, IDMEM 3:{memory blocks, Mem Table, blocks:{(32768, 32K)}}},
MEM 12:{mem size, int, 16K}}

440ms/28ms 782ms 1.8s/1.4s

8) deploy(SysStat) best-effort -/9ms 580ms -/0.6s

5) and redeploy (Request 6) the Log application (dynamic
reconfiguration is left for future work). This time Chigh is
chosen given its higher log rate and the binding changes to
ARM 2 because ARM 1 cannot accommodate Chigh (only
250M cycles remain). The last application has two configura-
tions and is executable on both the PL and PS. Since there is no
defined quality for this application, the RISCV implementation
dominates the other in terms of deployment costs. Hence, Criscv

is chosen and a TDM slot of length 40K is allocated to it after
refining the required 40% share to the TDM allocation.

Distributed setting: To demonstrate the portability and
extensibility of the framework, we consider another setting
in which a PYNQ board is connected to a Core i7-based
PC (running Ubuntu) where VEPs are realized by Docker
containers [30]. In this setting, the orchestration layer as well
as another Resource Manager to manage PC resources run on
the PC. Thanks to the portability of OpenDDS and our C++
implementation, the framework does not need to change for
operating in this setting. Since the PC runs a generic Ubuntu, it
is suitable for running non-real-time tasks. For our experiment,
we consider a web service packaged in a Docker image to
visualize the system status. Initially, when the system boots,
the board is not connected and only the PC resources compose
our execution platform. A deployment request to run the web
service (SysStat in the table) is issued. Since we consider
this application as a non-real-time one, no required budget is
specified for it. The brokering time is relatively small and the
total deployment time is dominated by the container creation
phase. Note that since we use Docker instead of directly using
cgroups, in this setting, the allocation and loading phase takes
much longer. We repeat the deployments performed in the first
experimental setting and measure the run times. Note that only
the VEP creation phase is done by the resources and their
arbiters; hence, they remain the same in this experimental
setting. However, brokering and total deployment times are
changed. Since the broker runs on the PC now, the brokering
times are significantly reduced and the VEP creation phase
has become the bottleneck for all the performed deployments.

VIII. CONCLUSION

Application and service deployment on computing plat-
forms with limited resources has been vastly studied. Most
of the proposed frameworks, however, are designed to op-
erate on certain infrastructures. To follow the current trend
– which is having heterogeneous resources and applications
in one system – we have proposed a deployment framework
equipped with a run-time optimization engine that is both
generic (in terms of application qualities, deployment costs,
and resource constraints) and flexible in defining constraints
and optimization goals. Supported resources can be easily
extended by implementing three operators on resource models
(i.e., +,−,�). The framework allows platform resources and
application resource requirements to be expressed at different
abstractions, which improves the flexibility of deployments
in terms of supported application types (e.g., hard/soft/non-
real-time) as well as application-to-resource bindings. The
framework is implemented and evaluated on an embedded
platform for a proof of concept. This paper focuses on
dynamic adding/removing applications to/from systems, and
other dynamic scenarios such as dynamic resource scaling,
VEP remapping (migration), and application reconfiguration
are considered for our future work.

ACKNOWLEDGMENTS

This research has received funding from the Electronic
Component Systems for European Leadership (ECSEL) Joint
Undertaking under grant agreement No 783162 (FitOptiVis
project). This Joint Undertaking receives support from the
European Union’s Horizon 2020 research and innovation pro-
gramme.

REFERENCES

[1] C.-H. Hong and B. Varghese, “Resource Management in Fog/Edge
Computing: A Survey on Architectures, Infrastructure, and Algorithms,”
ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–37, 2019.

[2] M. Hendriks, M. Geilen, K. Goossens, R. de Jong, and T. Basten,
“Interface Modeling for Quality and Resource Management,” Logical
Methods in Computer Science, vol. 17, 2021.

[3] M. Garcı́a-Valls and R. Baldoni, “Adaptive middleware design for CPS:
Considerations on the OS, resource managers, and the network run-
time,” in International Workshop on Adaptive and Reflective Middle-
ware, 2015, pp. 1–6.

[4] B. Lisper, “SWEET – A Tool for WCET Flow Analysis,” in Inter-
national Symposium On Leveraging Applications of Formal Methods,
Verification and Validation, 2014, pp. 482–485.

[5] F. C. Delicato, P. F. Pires, T. Batista et al., Resource Management for
Internet of Things. Springer, 2017, vol. 16.

[6] M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar, “DIANE – Dy-
namic IoT Application Deployment,” in IEEE International Conference
on Mobile Services, 2015, pp. 298–305.

[7] H. Sami and A. Mourad, “Dynamic On-Demand Fog Formation Offering
On-the-Fly IoT Service Deployment,” IEEE Transactions on Network
and Service Management, vol. 17, no. 2, pp. 1026–1039, 2020.

[8] W. do Espı́rito Santo, R. d. S. M. Júnior, A. d. R. L. Ribeiro, D. S. Silva,
and R. Santos, “Systematic Mapping on Orchestration of Container-
based Applications in Fog Computing,” in International Conference on
Network and Service Management (CNSM), 2019, pp. 1–7.

[9] V. Struhár, M. Behnam, M. Ashjaei, and A. V. Papadopoulos, “Real-
Time Containers: A Survey,” in Workshop on Fog Computing and the
IoT (Fog-IoT), 2020.

[10] S. Sinha, M. Koedam, G. Breaban, A. Nelson, A. B. Nejad, M. Geilen,
and K. Goossens, “Composable and predictable dynamic loading for
time-critical partitioned systems on multiprocessor architectures,” Mi-
croprocessors and Microsystems, vol. 39, no. 8, pp. 1087–1107, 2015.

[11] M. B. Nguyen, V. Tran, and L. Hluchy, “A Generic Development
and Deployment Framework for Cloud Computing and Distributed
Applications,” Computing and informatics, vol. 32, no. 3, pp. 461–485,
2013.

[12] A. Agirre, J. Parra, A. Armentia, E. Estévez, and M. Marcos, “QoS
Aware Middleware Support for Dynamically Reconfigurable Component
Based IoT Applications,” International Journal of Distributed Sensor
Networks, vol. 12, no. 4, 2016.

[13] Y. Lee, C. Min, Y. Ju, S. Kang, Y. Rhee, and J. Song, “An Active
Resource Orchestration Framework for PAN-Scale, Sensor-Rich Envi-
ronments,” IEEE Transactions on Mobile Computing, vol. 13, no. 3, pp.
596–610, 2013.

[14] Y. Hu, C. De Laat, and Z. Zhao, “Multi-objective Container Deployment
on Heterogeneous Clusters,” in International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), 2019, pp. 592–599.

[15] T. Orazio, C. Domenico, M. Pietro et al., “TORCH: a TOSCA-Based
Orchestrator of Multi-Cloud Containerised Applications,” Journal of
Grid Computing, vol. 19, no. 1, 2021.

[16] P. Bellasi, G. Massari, and W. Fornaciari, “Effective Runtime Resource
Management Using Linux Control Groups with the BarbequeRTRM
Framework,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 14, no. 2, pp. 1–17, 2015.

[17] G. Agosta, W. Fornaciari, G. Massari, A. Pupykina, F. Reghenzani, and
M. Zanella, “Managing Heterogeneous Resources in HPC Systems,” in
Workshop on Parallel Programming and RunTime Management Tech-
niques for Manycore Architectures and Design Tools and Architectures
for Multicore Embedded Computing Platforms (PARMA-DITAM), 2018,
pp. 7–12.

[18] F. A. Salaht, F. Desprez, and A. Lebre, “An Overview of Service
Placement Problem in Fog and Edge Computing,” ACM Computing
Surveys (CSUR), vol. 53, no. 3, pp. 1–35, 2020.

[19] J. Wang, H. Qi, K. Li, and X. Zhou, “PRSFC-IoT: A Performance and
Resource Aware Orchestration System of Service Function Chaining for
Internet of Things,” IEEE Internet of Things Journal, vol. 5, no. 3, pp.
1400–1410, 2018.

[20] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards QoS-aware
Fog Service Placement,” in International Conference on Fog and Edge
Computing (ICFEC), 2017, pp. 89–96.

[21] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
Multi/Many-core Systems: Survey of Current and Emerging Trends,”
in Design Automation Conference (DAC), 2013, pp. 1–10.

[22] K. Goossens, M. Koedam, A. Nelson, S. Sinha, S. Goossens, Y. Li,
G. Breaban, R. van Kampenhout, R. Tavakoli, J. Valencia et al., “NoC-
Based Multiprocessor Architecture for Mixed-Time-Criticality Applica-
tions.” 2017.

[23] “Opendds,” http://www.opendds.org.
[24] “Pynq-z2,” http://www.tul.com.tw/ProductsPYNQ-Z2.html.
[25] “Verintec solutions,” http://www.verintec.com.

[26] A. Nelson, A. B. Nejad, A. Molnos, M. Koedam, and K. Goossens,
“CoMik: A Predictable and Cycle-Accurately Composable Real-Time
Microkernel,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2014, pp. 1–4.

[27] M. Geilen, T. Basten, B. Theelen, and R. Otten, “An Algebra of Pareto
Points,” Fundamenta Informaticae, vol. 78, no. 1, pp. 35–74, 2007.

[28] D. Stiliadis and A. Varma, “Latency-Rate Servers: A General Model for
Analysis of Traffic Scheduling Algorithms,” IEEE/ACM Transactions on
networking, vol. 6, no. 5, pp. 611–624, 1998.

[29] S. Perathoner, E. Wandeler, L. Thiele, A. Hamann, S. Schliecker,
R. Henia, R. Racu, R. Ernst, and M. G. Harbour, “Influence of different
abstractions on the performance analysis of distributed hard real-time
systems,” Design Automation for Embedded Systems, vol. 13, no. 1, pp.
27–49, 2009.

[30] D. Merkel, “Docker: Lightweight Linux Containers for Consistent
Development and Deployment,” Linux journal, vol. 2014, no. 239, 2014.

