160 research outputs found

    Development of the recombinant aequorin method and its evaluation for calcium measurement in filamentous fungi

    Get PDF
    The aim of this work was to express the Ca2+ sensitive photoprotein, apoaequorin, in filamentous fungi to a high level in order to allow routine and simple measurement of changes in cytosolic Ca2+ ([Ca2+]c) concentration in living hyphae. Analysis of the codon bias of the available apoaequorin genes showed a large discrepancy with the codon usage of the target fungi, Neurospora crassa, Aspergillus niger and A. awamori. To overcome this discrepancy, a synthetic apoaequorin gene with optimal codon usage for Neurospora and Aspergillus was designed and synthesised. An expression vector was generated for the production of apoaequorin from the synthetic gene using a constitutive Aspergillus promoter and suitable selectable markers for transformation. An expression vector was also produced for use in N. crassa to allow comparison of the aequorin levels obtained between the synthetic gene and the native gene. Strains of A. niger and A. awamori were transformed with the Aspergillus apoaequorin expression vector, and transformants expressing large amounts of active aequorin were selected and purified. Transformants of N. crassa were also produced using the Neurospora expression vector, and the highest expression transformants isolated and purified. Comparisons of the aequorin expression levels obtained in these transformants showed a 200-fold higher level of expression in A. awamori compared with that obtained in N. crassa. Also, the comparison between native and synthetic aequorin production showed a 280-fold higher level in the synthetic aequorin transformant. One high expression transformant from each Aspergillus species was chosen for investigation of [Ca2+]c responses to a variety of external stimuli. A successful method of growing cultures in small volume, still liquid culture in 96-well microtitre plates was developed which allowed efficient analysis of [Ca2+]c in growing cultures. Using such cultures, [Ca2+]c was monitored during germination, growth and conidiation. A suitable age of culture (18-36 h) was determined for investigation of changes in [Ca2+]c in response to external stimuli. The first stimulus investigated was the application of high extracellular concentration (50 mM) of Ca2+, which elicited a large [Ca2+]c increase

    Mitochondrial Abnormality Associates with Type-Specific Neuronal Loss and Cell Morphology Changes in the Pedunculopontine Nucleus in Parkinson Disease

    Get PDF
    Cholinergic neuronal loss in the pedunculopontine nucleus (PPN) associates with abnormal functions, including certain motor and nonmotor symptoms. This realization has led to low-frequency stimulation of the PPN for treating patients with Parkinson disease (PD) who are refractory to other treatment modalities. However, the molecular mechanisms underlying PPN neuronal loss and the therapeutic substrate for the clinical benefits following PPN stimulation remain poorly characterized, hampering progress toward designing more efficient therapies aimed at restoring the PPN's normal functions during progressive parkinsonism. Here, we investigated postmortem pathological changes in the PPN of PD cases. Our study detected a loss of neurons producing gamma-aminobutyric acid (GABA) as their output and glycinergic neurons, along with the pronounced loss of cholinergic neurons. These losses were accompanied by altered somatic cell size that affected the remaining neurons of all neuronal subtypes studied here. Because studies showed that mitochondrial dysfunction exists in sporadic PD and in PD animal models, we investigated whether altered mitochondrial composition exists in the PPN. A significant up-regulation of several mitochondrial proteins was seen in GABAergic and glycinergic neurons; however, cholinergic neurons indicated down-regulation of the same proteins. Our findings suggest an imbalance in the activity of key neuronal subgroups of the PPN in PD, potentially because of abnormal inhibitory activity and altered cholinergic outflow

    Feedback between p21 and reactive oxygen production is necessary for cell senescence

    Get PDF
    The sustained activation of CDKN1A (p21/Waf1/Cip1) by a DNA damage response induces mitochondrial dysfunction and reactive oxygen species (ROS) production via signalling through CDKN1A-GADD45A-MAPK14- GRB2-TGFBR2-TGFbeta in senescing primary human and mouse cells in vitro and in vivo.Enhanced ROS production in senescing cells generates additional DNA damage. Although this damage is repairable and transient, it elevates the average levels of DNA damage response permanently, thus forming a positive feedback loop.This loop is necessary and sufficient to maintain the stability of growth arrest until a ‘point of no return' is reached during establishment of senescence

    Mitochondrial Dysfunction Accounts for the Stochastic Heterogeneity in Telomere-Dependent Senescence

    Get PDF
    Aging is an inherently stochastic process, and its hallmark is heterogeneity between organisms, cell types, and clonal populations, even in identical environments. The replicative lifespan of primary human cells is telomere dependent; however, its heterogeneity is not understood. We show that mitochondrial superoxide production increases with replicative age in human fibroblasts despite an adaptive UCP-2–dependent mitochondrial uncoupling. This mitochondrial dysfunction is accompanied by compromised [Ca(2+)](i) homeostasis and other indicators of a retrograde response in senescent cells. Replicative senescence of human fibroblasts is delayed by mild mitochondrial uncoupling. Uncoupling reduces mitochondrial superoxide generation, slows down telomere shortening, and delays formation of telomeric γ-H2A.X foci. This indicates mitochondrial production of reactive oxygen species (ROS) as one of the causes of replicative senescence. By sorting early senescent (SES) cells from young proliferating fibroblast cultures, we show that SES cells have higher ROS levels, dysfunctional mitochondria, shorter telomeres, and telomeric γ-H2A.X foci. We propose that mitochondrial ROS is a major determinant of telomere-dependent senescence at the single-cell level that is responsible for cell-to-cell variation in replicative lifespan

    mTORC1 activity is supported by spatial association with focal adhesions

    Get PDF
    The mammalian target of rapamycin complex 1 (mTORC1) integrates mitogenic and stress signals to control growth and metabolism. Activation of mTORC1 by amino acids and growth factors involves recruitment of the complex to the lysosomal membrane and is further supported by lysosome distribution to the cell periphery. Here, we show that translocation of lysosomes toward the cell periphery brings mTORC1 into proximity with focal adhesions (FAs). We demonstrate that FAs constitute discrete plasma membrane hubs mediating growth factor signaling and amino acid input into the cell. FAs, as well as the translocation of lysosome-bound mTORC1 to their vicinity, contribute to both peripheral and intracellular mTORC1 activity. Conversely, lysosomal distribution to the cell periphery is dispensable for the activation of mTORC1 constitutively targeted to FAs. This study advances our understanding of spatial mTORC1 regulation by demonstrating that the localization of mTORC1 to FAs is both necessary and sufficient for its activation by growth-promoting stimuli

    Mitochondria are required for pro-ageing features of the senescent phenotype

    Get PDF
    Cell senescence is an important tumour suppressor mechanism and driver of ageing. Both functions are dependent on the development of the senescent phenotype, which involves an overproduction of pro‐inflammatory and pro‐oxidant signals. However, the exact mechanisms regulating these phenotypes remain poorly understood. Here, we show the critical role of mitochondria in cellular senescence. In multiple models of senescence, absence of mitochondria reduced a spectrum of senescence effectors and phenotypes while preserving ATP production via enhanced glycolysis. Global transcriptomic analysis by RNA sequencing revealed that a vast number of senescent‐associated changes are dependent on mitochondria, particularly the pro‐inflammatory phenotype. Mechanistically, we show that the ATM, Akt and mTORC1 phosphorylation cascade integrates signals from the DNA damage response (DDR) towards PGC‐1β‐dependent mitochondrial biogenesis, contributing to a ROS‐mediated activation of the DDR and cell cycle arrest. Finally, we demonstrate that the reduction in mitochondrial content in vivo, by either mTORC1 inhibition or PGC‐1β deletion, prevents senescence in the ageing mouse liver. Our results suggest that mitochondria are a candidate target for interventions to reduce the deleterious impact of senescence in ageing tissues
    corecore