126 research outputs found

    Analysis of Environment-Marker Associations in American Chestnut

    Get PDF
    American chestnut (Castanea dentata Borkh.) was a dominant tree species in its native range in eastern North America until the accidentally introduced fungus Cryphonectria parasitica (Murr.) Barr, that causes chestnut blight, led to a collapse of the species. Different approaches (e.g., genetic engineering or conventional breeding) are being used to fight against chestnut blight and to reintroduce the species with resistant planting stock. Because of large climatic differences within the distribution area of American chestnut, successful reintroduction of the species requires knowledge and consideration of local adaptation to the prevailing environmental conditions. Previous studies revealed clear patterns of genetic diversity along the northeast-southwest axis of the Appalachian Mountains, but less is known about the distribution of potentially adaptive genetic variation within the distribution area of this species. In this study, we investigated neutral and potentially adaptive genetic variation in nine American chestnut populations collected from sites with different environmental conditions. In total, 272 individuals were genotyped with 24 microsatellite (i.e., simple sequence repeat (SSR)) markers (seven genomic SSRs and 17 EST-SSRs). An FST-outlier analysis revealed five outlier loci. The same loci, as well as five additional ones, were significantly associated with environmental variables of the population sites in an environmental association analysis. Four of these loci are of particular interest, since they were significant in both methods, and they were associated with environmental variation, but not with geographic variation. Hence, these loci might be involved in (temperature-related) adaptive processes in American chestnut. This work aims to help understanding the genetic basis of adaptation in C. dentata, and therefore the selection of suitable provenances for further breeding efforts

    Analysis of Environment-Marker Associations in American Chestnut

    Get PDF
    American chestnut (Castanea dentata Borkh.) was a dominant tree species in its native range in eastern North America until the accidentally introduced fungus Cryphonectria parasitica (Murr.) Barr, that causes chestnut blight, led to a collapse of the species. Different approaches (e.g., genetic engineering or conventional breeding) are being used to fight against chestnut blight and to reintroduce the species with resistant planting stock. Because of large climatic differences within the distribution area of American chestnut, successful reintroduction of the species requires knowledge and consideration of local adaptation to the prevailing environmental conditions. Previous studies revealed clear patterns of genetic diversity along the northeast-southwest axis of the Appalachian Mountains, but less is known about the distribution of potentially adaptive genetic variation within the distribution area of this species. In this study, we investigated neutral and potentially adaptive genetic variation in nine American chestnut populations collected from sites with different environmental conditions. In total, 272 individuals were genotyped with 24 microsatellite (i.e., simple sequence repeat (SSR)) markers (seven genomic SSRs and 17 EST-SSRs). An FST-outlier analysis revealed five outlier loci. The same loci, as well as five additional ones, were significantly associated with environmental variables of the population sites in an environmental association analysis. Four of these loci are of particular interest, since they were significant in both methods, and they were associated with environmental variation, but not with geographic variation. Hence, these loci might be involved in (temperature-related) adaptive processes in American chestnut. This work aims to help understanding the genetic basis of adaptation in C. dentata, and therefore the selection of suitable provenances for further breeding efforts

    Consequences of Shifts in Abundance and Distribution of American Chestnut for Restoration of a Foundation Forest Tree

    Get PDF
    Restoration of foundation species, such as the American chestnut (Castanea dentata) that was devastated by an introduced fungus, can restore ecosystem function. Understanding both the current distribution as well as biogeographic patterns is important for restoration planning. We used United States Department of Agriculture Forest Service Forest Inventory and Analysis data to quantify the current density and distribution of C. dentata. We then review the literature concerning biogeographic patterns in C. dentata. Currently, 431 ± 30.2 million stems remain. The vast majority (360 ± 22 million) are sprouts \u3c 2.5 cm dbh. Although this number is approximately 10% of the estimated pre-blight population, blight has caused a major shift in the size structure. The current-day population has a larger range, particularly west and north, likely due to human translocation. While climate change could facilitate northward expansion, limited seed reproduction makes this unlikely without assisted migration. Previous research demonstrates that the current, smaller population contains slightly higher genetic diversity than expected, although little information exists on biogeographic patterns in the genetics of adaptive traits. Our research provides a baseline characterization of the contemporary population of C. dentata, to enable monitoring stem densities and range limits to support restoration efforts

    Personal Familiarity Influences the Processing of Upright and Inverted Faces in Infants

    Get PDF
    Infant face processing becomes more selective during the first year of life as a function of varying experience with distinct face categories defined by species, race, and age. Given that any individual face belongs to many such categories (e.g. A young Caucasian man's face) we asked how the neural selectivity for one aspect of facial appearance was affected by category membership along another dimension of variability. 6-month-old infants were shown upright and inverted pictures of either their own mother or a stranger while event-related potentials (ERPs) were recorded. We found that the amplitude of the P400 (a face-sensitive ERP component) was only sensitive to the orientation of the mother's face, suggesting that “tuning” of the neural response to faces is realized jointly across multiple dimensions of face appearance

    First interspecific genetic linkage map for Castanea sativa x Castanea crenata revealed QTLs for resistance to Phytophthora cinnamomi

    Get PDF
    Research ArticleThe Japanese chestnut (Castanea crenata) carries resistance to Phytophthora cinnamomi, the destructive and widespread oomycete causing ink disease. The European chestnut (Castanea sativa), carrying little to no disease resistance, is currently threatened by the presence of the oomycete pathogen in forests, orchards and nurseries. Determining the genetic basis of P. cinnamomi resistance, for further selection of molecular markers and candidate genes, is a prominent issue for implementation of marker assisted selection in the breeding programs for resistance. In this study, the first interspecific genetic linkage map of C. sativa x C. crenata allowed the detection of QTLs for P. cinnamomi resistance. The genetic map was constructed using two independent, control-cross mapping populations. Chestnut populations were genotyped using 452 microsatellite and single nucleotide polymorphism molecular markers derived from the available chestnut transcriptomes. The consensus genetic map spans 498,9 cM and contains 217 markers mapped with an average interval of 2.3 cM. For QTL analyses, the progression rate of P. cinnamomi lesions in excised shoots inoculated was used as the phenotypic metric. Using non-parametric and composite interval mapping approaches, two QTLs were identified for ink disease resistance, distributed in two linkage groups: E and K. The presence of QTLs located in linkage group E regarding P. cinnamomi resistance is consistent with a previous preliminary study developed in American x Chinese chestnut populations, suggesting the presence of common P. cinnamomi defense mechanisms across species. Results presented here extend the genomic resources of Castanea genus providing potential tools to assist the ongoing and future chestnut breeding programsinfo:eu-repo/semantics/publishedVersio

    First Interspecific Genetic Linkage Map for \u3cem\u3eCastanea sativa\u3c/em\u3e x \u3cem\u3eCastanea crenata\u3c/em\u3e Revealed QTLs for Resistance to \u3cem\u3ePhytophthora cinnamomi\u3c/em\u3e

    Get PDF
    The Japanese chestnut (Castanea crenata) carries resistance to Phytophthora cinnamomi, the destructive and widespread oomycete causing ink disease. The European chestnut (Castanea sativa), carrying little to no disease resistance, is currently threatened by the presence of the oomycete pathogen in forests, orchards and nurseries. Determining the genetic basis of P. cinnamomi resistance, for further selection of molecular markers and candidate genes, is a prominent issue for implementation of marker assisted selection in the breeding programs for resistance. In this study, the first interspecific genetic linkage map of C. sativa x C. crenataallowed the detection of QTLs for P. cinnamomi resistance. The genetic map was constructed using two independent, control-cross mapping populations. Chestnut populations were genotyped using 452 microsatellite and single nucleotide polymorphism molecular markers derived from the available chestnut transcriptomes. The consensus genetic map spans 498,9 cM and contains 217 markers mapped with an average interval of 2.3 cM. For QTL analyses, the progression rate of P. cinnamomi lesions in excised shoots inoculated was used as the phenotypic metric. Using non-parametric and composite interval mapping approaches, two QTLs were identified for ink disease resistance, distributed in two linkage groups: E and K. The presence of QTLs located in linkage group E regarding P. cinnamomi resistance is consistent with a previous preliminary study developed in American x Chinese chestnut populations, suggesting the presence of common P. cinnamomi defense mechanisms across species. Results presented here extend the genomic resources of Castanea genus providing potential tools to assist the ongoing and future chestnut breeding programs

    Exome Genotyping, Linkage Disequilibrium and Population Structure in Loblolly Pine (\u3cem\u3ePinus taeda\u3c/em\u3e L.)

    Get PDF
    Background: Loblolly pine (Pinus taeda L.) is one of the most widely planted and commercially important forest tree species in the USA and worldwide, and is an object of intense genomic research. However, whole genome resequencing in loblolly pine is hampered by its large size and complexity and a lack of a good reference. As a valid and more feasible alternative, entire exome sequencing was hence employed to identify the gene-associated single nucleotide polymorphisms (SNPs) and to genotype the sampled trees. Results: The exons were captured in the ADEPT2 association mapping population of 375 clonally-propagated loblolly pine trees using NimbleGen oligonucleotide hybridization probes, and then exome-enriched genomic DNA fragments were sequenced using the Illumina HiSeq 2500 platform. Oligonucleotide probes were designed based on 199,723 exons (≈49 Mbp) partitioned from the loblolly pine reference genome (PineRefSeq v. 1.01). The probes covered 90.2 % of the target regions. Capture efficiency was high; on average, 67 % of the sequence reads generated for each tree could be mapped to the capture target regions, and more than 70 % of the captured target bases had at least 10X sequencing depth per tree. A total of 972,720 high quality SNPs were identified after filtering. Among them, 53 % were located in coding regions (CDS), 5 % in 5’ or 3’ untranslated regions (UTRs) and 42 % in non-target and non-coding regions, such as introns and adjacent intergenic regions collaterally captured. We found that linkage disequilibrium (LD) decayed very rapidly, with the correlation coefficient (r 2) between pairs of SNPs linked within single scaffolds decaying to half maximum (r 2 = 0.22) within 55 bp, to r 2 = 0.1 within 192 bp, and to r 2 = 0.05 within 451 bp. Population structure analysis using unlinked SNPs demonstrated the presence of two main distinct clusters representing western and eastern parts of the loblolly pine range included in our sample of trees. Conclusions: The obtained results demonstrated the efficiency of exome capture for genotyping species such as loblolly pine with a large and complex genome. The highly diverse genetic variation reported in this study will be a valuable resource for future genetic and genomic research in loblolly pine

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction, and reports on seven research projects.National Institutes of Health Grant 5 R01 DC00194National Institutes of Health Grant P01 DC00119National Institutes of Health Grant F32 DC00073National Institutes of Health Grant 5 R01 DC00473National Institutes of Health Grant 2 R01 DC00238National Institutes of Health Grant 2 R01 DC00235National Institutes of Health Grant 5 P01 DC00361National Institutes of Health Grant T32 DC00006Whitaker Health Sciences Fun
    corecore