5 research outputs found
An updated review on anti-diabetic agents and their functions: a comparative study
Chronic metabolic disease is considered by a high concentration of glucose in the blood consequent from imperfections in insulin secretion or insulin action. Currently, it is rapidly becoming an epidemic in several nations around the world affecting millions of people. Hence, it is predicted that the number of affected may double in the next couple of years. This increase may be due to the rise in the aging population, adding to an already existing burden on healthcare providers, particularly in developing countries. Based on the unusual elevation of plasma glucose diabetes is divided into two main types, comprising type (1, 2) DM, gestational diabetes mellitus, neonatal diabetes, maturity-onset diabetes of the young (MODY), and squeals induced by endocrinopathies, the consumption of steroids, along with other elements. T1 diabetes mellitus and T2 diabetes mellitus are considered inadequate insulin synthesis. Type 1 diabetes is a condition that usually affects young people, while type 2 diabetes is more common in older individuals who have unhealthy lifestyles. Both types of diabetes have different causes, symptoms, and treatments due to their distinct differences in how the body processes sugar. The aim of the present study is to learn more specifically pertaining to diabetes mellitus, its complications including clinical appearance, associated risk factors, anti-diabetic regime and its consequences at present
A cost-effective o-toulidine-based Schiff base as an efficient sorbent for metal ion uptake from aqueous and soil samples: Synthesis, antimicrobial, and acute toxicity analyses
Heavy metals create serious health problems, so the practical implementation and development of low-cost sorbent materials to remove heavy metals from the ecosystem is a worldwide issue. The purpose of this study is to find a low-cost ligand that has the potential to adsorb heavy metals from aqueous and soil samples and also has biological potential. For this, a Schiff base, dimeric o-toluidine (SBL), has been synthesized through condensation, characterized by spectroscopic analysis, and had its biological activities measured. We also studied its adsorption efficiency through a batch technique to remove Zn(II), Co(II), and Cu(II) from aqueous and soil samples under different conditions such as metal ion concentration, pH, contact time, and SBL concentration. The adsorption potential of SBL was analyzed by the Langmuir and Freundlich adsorption isotherms. The values of correlation coefficients revealed that the Freundlich isotherm elucidated results that were more appropriable than the Langmuir model. Adsorption equilibrium was established in 90 min for aqueous samples and in 1,440 min for soil samples. For the maximum adsorption of all metals, the optimum pH was 8, and it showed a capacity to remove 77 to 95 percent of metals from the samples. The maximum adsorption capacity (qmax) of SBL were 75.75, 62.50, and 9.17 mg g-1 in the case of Cu(II), Zn(II), and Co(II) ions, respectively, from aqueous samples and 10.95, 64.10, and 88.49 mg g-1 in the case of Zn(II), Cu (II), and Co(II), respectively, from soil samples. The effectiveness of SBL in the sorption of the selected metals was found to be Cu+2 > Zn+2 > Co+2 for aqueous samples and Co+2 > Cu+2 > Zn+2 for soil samples. The antimicrobial activity of SBL was also investigated. The results revealed that SBL showed moderate inhibitory activity against Staphylococcus dysentria, C. albican, and Aspergillus niger, whereas it exhibited weak activity against S. aureus, P. aureginosa, K. pneumoniae, P. vulgaris, and E.coli when compared to Fluconazole and Ciprofloxacin as the standard. Acute toxicity of the synthesized compound was measured through its daily oral administration with various doses ranging from 0.1 to 1,000 mg/kg of the mice’s body weights. Even at the dose of 1,000 mg/kg, the SBL showed no mortality or any type of general behavioral change in the treated mice. Based on preparation cost, metal removal capacity, toxicity, and antimicrobial activities, SBL is an excellent sorbent and should be studied at pilot scale levels
Biochar influences growth performance and heavy metal accumulation in spinach under wastewater irrigation
This pot-based study investigated the influence of cow-manure-derived slow pyrolyzed biochar on the growth performance and accumulation of Nickle (Ni), Zink (Zn), Copper (Cu) and Iron (Fe) in the aboveground plant biomass of spinach (Spinacia oleracea L.) grown under wastewater and groundwater irrigation. Biochar was applied in soil with or without manure (mixture of dung of cow and sheep/goat) at 3, 5 and 10% rates. Biochar application at 5% and when co-applied with manure at all application rates increased aboveground plant biomass under wastewater and groundwater irrigation. Application of biochar at 5 and 10% rates and when co-amended with manure at all application rates, increased the leaf area index under wastewater irrigation but caused no influence under groundwater irrigation. Biochar amendment at 5% rate reduced while at 10% rate and when co-applied with manure at 3 and 5% application rates increased root biomass under wastewater irrigation. Under groundwater irrigation, amendment of biochar at 10% and when co-applied with manure at 3 and 10% increased root biomass. Under wastewater irrigation, application of biochar tended to reduce the concentration of Ni when co-amended with manure while increased the concentration of Cu in aboveground plant tissues at 3 and 5% rates and when co-applied with manure at 10% rate. In conclusion, manure-derived biochar increased crop growth performance and influenced accumulation of heavy metals in aboveground plant tissues under wastewater and groundwater irrigation. Application of manure with biochar reduced concentration of Ni under wastewater irrigation and enhanced crop growth performance under groundwater irrigation
DataSheet1_A cost-effective o-toulidine-based Schiff base as an efficient sorbent for metal ion uptake from aqueous and soil samples: Synthesis, antimicrobial, and acute toxicity analyses.docx
Heavy metals create serious health problems, so the practical implementation and development of low-cost sorbent materials to remove heavy metals from the ecosystem is a worldwide issue. The purpose of this study is to find a low-cost ligand that has the potential to adsorb heavy metals from aqueous and soil samples and also has biological potential. For this, a Schiff base, dimeric o-toluidine (SBL), has been synthesized through condensation, characterized by spectroscopic analysis, and had its biological activities measured. We also studied its adsorption efficiency through a batch technique to remove Zn(II), Co(II), and Cu(II) from aqueous and soil samples under different conditions such as metal ion concentration, pH, contact time, and SBL concentration. The adsorption potential of SBL was analyzed by the Langmuir and Freundlich adsorption isotherms. The values of correlation coefficients revealed that the Freundlich isotherm elucidated results that were more appropriable than the Langmuir model. Adsorption equilibrium was established in 90 min for aqueous samples and in 1,440 min for soil samples. For the maximum adsorption of all metals, the optimum pH was 8, and it showed a capacity to remove 77 to 95 percent of metals from the samples. The maximum adsorption capacity (qmax) of SBL were 75.75, 62.50, and 9.17 mg g-1 in the case of Cu(II), Zn(II), and Co(II) ions, respectively, from aqueous samples and 10.95, 64.10, and 88.49 mg g-1 in the case of Zn(II), Cu (II), and Co(II), respectively, from soil samples. The effectiveness of SBL in the sorption of the selected metals was found to be Cu+2 > Zn+2 > Co+2 for aqueous samples and Co+2 > Cu+2 > Zn+2 for soil samples. The antimicrobial activity of SBL was also investigated. The results revealed that SBL showed moderate inhibitory activity against Staphylococcus dysentria, C. albican, and Aspergillus niger, whereas it exhibited weak activity against S. aureus, P. aureginosa, K. pneumoniae, P. vulgaris, and E.coli when compared to Fluconazole and Ciprofloxacin as the standard. Acute toxicity of the synthesized compound was measured through its daily oral administration with various doses ranging from 0.1 to 1,000 mg/kg of the mice’s body weights. Even at the dose of 1,000 mg/kg, the SBL showed no mortality or any type of general behavioral change in the treated mice. Based on preparation cost, metal removal capacity, toxicity, and antimicrobial activities, SBL is an excellent sorbent and should be studied at pilot scale levels. </p