2,085 research outputs found

    TDIR: Time-Delay Interferometric Ranging for Space-Borne Gravitational-Wave Detectors

    Full text link
    Space-borne interferometric gravitational-wave detectors, sensitive in the low-frequency (mHz) band, will fly in the next decade. In these detectors, the spacecraft-to-spacecraft light-travel times will necessarily be unequal and time-varying, and (because of aberration) will have different values on up- and down-links. In such unequal-armlength interferometers, laser phase noise will be canceled by taking linear combinations of the laser-phase observables measured between pairs of spacecraft, appropriately time-shifted by the light propagation times along the corresponding arms. This procedure, known as time-delay interferometry (TDI), requires an accurate knowledge of the light-time delays as functions of time. Here we propose a high-accuracy technique to estimate these time delays and study its use in the context of the Laser Interferometer Space Antenna (LISA) mission. We refer to this ranging technique, which relies on the TDI combinations themselves, as Time-Delay Interferometric Ranging (TDIR). For every TDI combination, we show that, by minimizing the rms power in that combination (averaged over integration times ∌104\sim 10^4 s) with respect to the time-delay parameters, we obtain estimates of the time delays accurate enough to cancel laser noise to a level well below the secondary noises. Thus TDIR allows the implementation of TDI without the use of dedicated inter-spacecraft ranging systems, with a potential simplification of the LISA design. In this paper we define the TDIR procedure formally, and we characterize its expected performance via simulations with the \textit{Synthetic LISA} software package.Comment: 5 pages, 2 figure

    LISA Science Results in the Presence of Data Disturbances

    Full text link
    Each spacecraft in the Laser Interferometer Space Antenna houses a proof mass which follows a geodesic through spacetime. Disturbances which change the proof mass position, momentum, and/or acceleration will appear in the LISA data stream as additive quadratic functions. These data disturbances inhibit signal extraction and must be removed. In this paper we discuss the identification and fitting of monochromatic signals in the data set in the presence of data disturbances. We also present a preliminary analysis of the extent of science result limitations with respect to the frequency of data disturbances

    An Estimation of the Gamma-Ray Burst Afterglow Apparent Optical Brightness Distribution Function

    Full text link
    By using recent publicly available observational data obtained in conjunction with the NASA Swift gamma-ray burst mission and a novel data analysis technique, we have been able to make some rough estimates of the GRB afterglow apparent optical brightness distribution function. The results suggest that 71% of all burst afterglows have optical magnitudes with mR < 22.1 at 1000 seconds after the burst onset, the dimmest detected object in the data sample. There is a strong indication that the apparent optical magnitude distribution function peaks at mR ~ 19.5. Such estimates may prove useful in guiding future plans to improve GRB counterpart observation programs. The employed numerical techniques might find application in a variety of other data analysis problems in which the intrinsic distributions must be inferred from a heterogeneous sample.Comment: 15 pages including 2 tables and 7 figures, accepted for publication in Ap

    A Deep Multicolor Survey V: The M Dwarf Luminosity Function

    Get PDF
    We present a study of M dwarfs discovered in a large area, multicolor survey. We employ a combination of morphological and color criteria to select M dwarfs to a limiting magnitude in V of 22, the deepest such ground-based survey for M dwarfs to date. We solve for the vertical disk stellar density law and use the resulting parameters to derive the M dwarf luminosity and mass functions from this sample. We find the stellar luminosity function peaks at M_V = 12 and declines thereafter. Our derived mass function for stars with M < 0.6 M_sun is inconsistent with a Salpeter function at the 3 sigma level; instead, we find the mass function is relatively flat for 0.6 M_sun > M > 0.1 M_sun.Comment: Accepted for publication in AJ. 19 pages including 4 embedded postscript figures (AASTEX

    Point Source Extraction with MOPEX

    Full text link
    MOPEX (MOsaicking and Point source EXtraction) is a package developed at the Spitzer Science Center for astronomical image processing. We report on the point source extraction capabilities of MOPEX. Point source extraction is implemented as a two step process: point source detection and profile fitting. Non-linear matched filtering of input images can be performed optionally to increase the signal-to-noise ratio and improve detection of faint point sources. Point Response Function (PRF) fitting of point sources produces the final point source list which includes the fluxes and improved positions of the point sources, along with other parameters characterizing the fit. Passive and active deblending allows for successful fitting of confused point sources. Aperture photometry can also be computed for every extracted point source for an unlimited number of aperture sizes. PRF is estimated directly from the input images. Implementation of efficient methods of background and noise estimation, and modified Simplex algorithm contribute to the computational efficiency of MOPEX. The package is implemented as a loosely connected set of perl scripts, where each script runs a number of modules written in C/C++. Input parameter setting is done through namelists, ASCII configuration files. We present applications of point source extraction to the mosaic images taken at 24 and 70 micron with the Multiband Imaging Photometer (MIPS) as part of the Spitzer extragalactic First Look Survey and to a Digital Sky Survey image. Completeness and reliability of point source extraction is computed using simulated data.Comment: 20 pages, 13 Postscript figures, accepted for publication in PAS

    The Lowest Mass White Dwarf

    Get PDF
    Extremely low mass white dwarfs are very rare objects likely formed in compact binary systems. We present MMT optical spectroscopy of 42 low mass white dwarf candidates serendipitously discovered in a survey for hypervelocity B-type stars. One of these objects, SDSS J0917+46, has Teff= 11,288 \pm 72 K and log g = 5.48 \pm 0.03; with an estimated mass of 0.17 M_sun, it is the lowest gravity/mass white dwarf currently known. However, 40 of the low mass candidates are normal DA white dwarfs with apparently inaccurate SDSS g magnitudes. We revisit the identification of low mass white dwarf candidates previously found in the SDSS, and conclude that four objects have M < 0.2 M_sun. None of these white dwarfs show excess emission from a binary companion, and radial velocity searches will be necessary to constrain the nature of the unseen companions.Comment: ApJ, accepted versio

    Interatomic potentials for mixed oxide (MOX) nuclear fuels

    Get PDF
    We extend our recently developed interatomic potentials for UO_{2} to the mixed oxide fuel system (U,Pu,Np)O_{2}. We do so by fitting against an extensive database of ab initio results as well as to experimental measurements. The applicability of these interactions to a variety of mixed environments beyond the fitting domain is also assessed. The employed formalism makes these potentials applicable across all interatomic distances without the need for any ambiguous splining to the well-established short-range Ziegler-Biersack-Littmark universal pair potential. We therefore expect these to be reliable potentials for carrying out damage simulations (and Molecular Dynamics simulations in general) in nuclear fuels of varying compositions for all relevant atomic collision energies

    Phase-resolved far-ultraviolet HST spectroscopy of the peculiar magnetic white dwarf RE J0317-853

    Get PDF
    We present phase resolved FUV HST FOS spectra of the rapidly rotating, highly magnetic white dwarf RE J0317-853. Using these data, we construct a new model for the magnetic field morphology across the stellar surface. From an expansion into spherical harmonics, we find the range of magnetic field strengths present is 180-800MG. For the first time we could identify an absorption feature present at certain phases at 1160A as a ``forbidden'' 1s_0 -> 2s_0 component, due to the combined presence of an electric and magnetic field.Comment: 15 pages including 4 figures. Accepted for publication in ApJ Letter
    • 

    corecore