13 research outputs found

    Matching NLO QCD Corrections in WHIZARD with the POWHEG scheme

    Full text link
    Building on the new automatic subtraction of NLO amplitudes in WHIZARD, we present our implementation of the POWHEG scheme to match radiative corrections consistently with the parton shower. We apply this general framework to two linear collider processes, e+e− → ttˉe^+e^-\,\to\,t\bar{t} and e+e− → ttˉHe^+e^-\,\to\,t\bar{t}H.Comment: 7 pages, 4 figures, to appear in the proceedings of the European Physical Society Conference on High Energy Physics 2015 (EPS-HEP 2015), Vienna, Austria, 22nd to 29th of July 201

    Automated NLO QCD Corrections with WHIZARD

    Full text link
    We briefly discuss the current status of NLO QCD automation in the Monte Carlo event generator WHIZARD. The functionality is presented for the explicit study of off-shell top quark production with associated backgrounds at a lepton collider.Comment: 9 pages, 5 figures, to appear in the proceedings of the European Physical Society Conference on High Energy Physics 2015 (EPS-HEP 2015), Vienna, Austria, 22nd to 29th of July 201

    FormCalc 8: Better Algebra and Vectorization

    Get PDF
    We present Version 8 of the Feynman-diagram calculator FormCalc. New features include in particular significantly improved algebraic simplification as well as vectorization of the generated code. The Cuba Library, used in FormCalc, features checkpointing to disk for all integration algorithms.Comment: 7 pages, LaTeX, proceedings contribution to ACAT 2013, Beijing, China, 16-21 May 201

    Modern Particle Physics Event Generation with WHIZARD

    Full text link
    We describe the multi-purpose Monte-Carlo event generator WHIZARD for the simulation of high-energy particle physics experiments. Besides the presentation of the general features of the program like SM physics, BSM physics, and QCD effects, special emphasis will be given to the support of the most accurate simulation of the collider environments at hadron colliders and especially at future linear lepton colliders. On the more technical side, the very recent code refactoring towards a completely object-oriented software package to improve maintainability, flexibility and code development will be discussed. Finally, we present ongoing work and future plans regarding higher-order corrections, more general model support including the setup to search for new physics in vector boson scattering at the LHC, as well as several lines of performance improvements.Comment: 7 pages; contribution to the proceedings of the conference "ACAT 2014 (Advanced Computing and Analysis Techniques in physics)", Prague, Czech Republic, September 201

    Modern particle physics event generation with WHIZARD14

    No full text
    We describe the multi-purpose Monte-Carlo event generator WHIZARD for the simulation of high-energy particle physics experiments. Besides the presentation of the general features of the program like SM physics, BSM physics, and QCD effects, special emphasis will be given to the support of the most accurate simulation of the collider environments at hadron colliders and especially at future linear lepton colliders. On the more technical side, the very recent code refactoring towards a completely object-oriented software package to improve maintainability, flexibility and code development will be discussed. Finally, we present ongoing work and future plans regarding higher-order corrections, more general model support including the setup to search for new physics in vector boson scattering at the LHC, as well as several lines of performance improvements
    corecore