6 research outputs found

    Simulated Wake Characteristics Data for Closely Spaced Parallel Runway Operations Analysis

    Get PDF
    A simulation experiment was performed to generate and compile wake characteristics data relevant to the evaluation and feasibility analysis of closely spaced parallel runway (CSPR) operational concepts. While the experiment in this work is not tailored to any particular operational concept, the generated data applies to the broader class of CSPR concepts, where a trailing aircraft on a CSPR approach is required to stay ahead of the wake vortices generated by a lead aircraft on an adjacent CSPR. Data for wake age, circulation strength, and wake altitude change, at various lateral offset distances from the wake-generating lead aircraft approach path were compiled for a set of nine aircraft spanning the full range of FAA and ICAO wake classifications. A total of 54 scenarios were simulated to generate data related to key parameters that determine wake behavior. Of particular interest are wake age characteristics that can be used to evaluate both time- and distance- based in-trail separation concepts for all aircraft wake-class combinations. A simple first-order difference model was developed to enable the computation of wake parameter estimates for aircraft models having weight, wingspan and speed characteristics similar to those of the nine aircraft modeled in this work

    Development of a Portfolio Management Approach with Case Study of the NASA Airspace Systems Program

    Get PDF
    A portfolio management approach was developed for the National Aeronautics and Space Administration s (NASA s) Airspace Systems Program (ASP). The purpose was to help inform ASP leadership regarding future investment decisions related to its existing portfolio of advanced technology concepts and capabilities (C/Cs) currently under development and to potentially identify new opportunities. The portfolio management approach is general in form and is extensible to other advanced technology development programs. It focuses on individual C/Cs and consists of three parts: 1) concept of operations (con-ops) development, 2) safety impact assessment, and 3) benefit-cost-risk (B-C-R) assessment. The first two parts are recommendations to ASP leaders and will be discussed only briefly, while the B-C-R part relates to the development of an assessment capability and will be discussed in greater detail. The B-C-R assessment capability enables estimation of the relative value of each C/C as compared with all other C/Cs in the ASP portfolio. Value is expressed in terms of a composite weighted utility function (WUF) rating, based on estimated benefits, costs, and risks. Benefit utility is estimated relative to achieving key NAS performance objectives, which are outlined in the ASP Strategic Plan.1 Risk utility focuses on C/C development and implementation risk, while cost utility focuses on the development and implementation portions of overall C/C life-cycle costs. Initial composite ratings of the ASP C/Cs were successfully generated; however, the limited availability of B-C-R information, which is used as inputs to the WUF model, reduced the meaningfulness of these initial investment ratings. Development of this approach, however, defined specific information-generation requirements for ASP C/C developers that will increase the meaningfulness of future B-C-R ratings

    Exploration of the Theoretical Physical Capacity of the John F. Kennedy International Airport Runway System

    Get PDF
    A design study was completed to explore the theoretical physical capacity (TPC) of the John F. Kennedy International Airport (KJFK) runway system for a northflow configuration assuming impedance-free (to throughput) air traffic control functionality. Individual runways were modeled using an agent-based, airspace simulation tool, the Airspace Concept Evaluation System (ACES), with all runways conducting both departures and arrivals on a first-come first-served (FCFS) scheduling basis. A realistic future flight schedule was expanded to 3.5 times the traffic level of a selected baseline day, September 26, 2006, to provide a steady overdemand state for KJFK runways. Rules constraining departure and arrival operations were defined to reflect physical limits beyond which safe operations could no longer be assumed. Safety buffers to account for all sources of operational variability were not included in the TPC estimate. Visual approaches were assumed for all arrivals to minimize inter-arrival spacing. Parallel runway operations were assumed to be independent based on lateral spacing distances. Resulting time intervals between successive airport operations were primarily constrained by same-runway and then by intersecting-runway spacing requirements. The resulting physical runway capacity approximates a theoretical limit that cannot be exceeded without modifying runway interaction assumptions. Comparison with current KJFK operational limits for a north-flow runway configuration indicates a substantial throughput gap of approximately 48%. This gap may be further analyzed to determine which part may be feasibly bridged through the deployment of advanced systems and procedures, and which part cannot, because it is either impossible or not cost-effective to control. Advanced systems for bridging the throughput gap may be conceptualized and simulated using this same experimental setup to estimate the level of gap closure achieved

    A Performance Assessment of a Tactical Airborne Separation Assistance System using Realistic, Complex Traffic Flows

    Get PDF
    This paper presents the results from a study that investigates the performance of aspects of an Airborne Separation Assistance System (ASAS) under varying demand levels using realistic traffic patterns. This study only addresses the tactical aspects of an ASAS using aircraft state data (latitude, longitude, altitude, heading and speed) to detect and resolve projected conflicts. The main focus of this paper is to determine the extent to which sole reliance on the proposed tactical ASAS can maintain aircraft separation at demand levels up to three times current traffic. The effect of mixing ASAS equipped aircraft with non-equipped aircraft that do not have the capability to self-separate is also investigated

    Characterizing a Wake-Free Safe Zone for the Simplified Aircraft-Based Paired Approach Concept

    Get PDF
    The Federal Aviation Administration (FAA) has proposed a concept of operations geared towards achieving increased arrival throughput at U.S. Airports, known as the Simplified Aircraft-based Paired Approach (SAPA) concept. In this study, a preliminary characterization of a wake-free safe zone (WFSZ) for the SAPA concept has been performed. The experiment employed Monte-Carlo simulations of varying approach profiles by aircraft pairs to closely-spaced parallel runways. Three different runway lateral spacings were investigated (750 ft, 1000 ft and 1400 ft), along with no stagger and 1500 ft stagger between runway thresholds. The paired aircraft were flown in a leader/trailer configuration with potential wake encounters detected using a wake detection surface translating with the trailing aircraft. The WFSZ is characterized in terms of the smallest observed initial in-trail distance leading to a wake encounter anywhere along the approach path of the aircraft. The results suggest that the WFSZ can be characterized in terms of two primary altitude regions, in ground-effect (IGE) and out of ground-effect (OGE), with the IGE region being the limiting case with a significantly smaller WFSZ. Runway stagger was observed to only modestly reduce the WFSZ size, predominantly in the OGE region

    Identification and Analysis of National Airspace System Resource Constraints

    Get PDF
    This analysis is the deliverable for the Airspace Systems Program, Systems Analysis Integration and Evaluation Project Milestone for the Systems and Portfolio Analysis (SPA) focus area SPA.4.06 Identification and Analysis of National Airspace System (NAS) Resource Constraints and Mitigation Strategies. "Identify choke points in the current and future NAS. Choke points refer to any areas in the en route, terminal, oceanic, airport, and surface operations that constrain actual demand in current and projected future operations. Use the Common Scenarios based on Transportation Systems Analysis Model (TSAM) projections of future demand developed under SPA.4.04 Tools, Methods and Scenarios Development. Analyze causes, including operational and physical constraints." The NASA analysis is complementary to a NASA Research Announcement (NRA) "Development of Tools and Analysis to Evaluate Choke Points in the National Airspace System" Contract # NNA3AB95C awarded to Logistics Management Institute, Sept 2013
    corecore