40 research outputs found

    Impaired renal function impacts negatively on vascular stiffness in patients with coronary artery disease.

    Get PDF
    BACKGROUND: Chronic kidney disease (CKD) and coronary artery disease (CAD) are independently associated with increased vascular stiffness. We examined whether renal function contributes to vascular stiffness independently of CAD status. METHODS: We studied 160 patients with CAD and 169 subjects without CAD. The 4-variable MDRD formula was used to estimate glomerular filtration rate (eGFR); impaired renal function was defined as eGFR <60 mL/min. Carotid-femoral pulse wave velocity (PWV) was measured with the SphygmoCor® device. Circulating biomarkers were assessed in plasma using xMAP® multiplexing technology. RESULTS: Patients with CAD and impaired renal function had greater PWV compared to those with CAD and normal renal function (10.2 [9.1;11.2] vs 7.3 [6.9;7.7] m/s; P < 0.001). In all patients, PWV was a function of eGFR (β = -0.293; P < 0.001) even after adjustment for age, sex, systolic blood pressure, body mass index and presence or absence of CAD. Patients with CAD and impaired renal function had higher levels of adhesion and inflammatory molecules including E-selectin and osteopontin (all P < 0.05) compared to those with CAD alone, but had similar levels of markers of oxidative stress. CONCLUSIONS: Renal function is a determinant of vascular stiffness even in patients with severe atherosclerotic disease. This was paralleled by differences in markers of cell adhesion and inflammation. Increased vascular stiffness may therefore be linked to inflammatory remodeling of the vasculature in people with impaired renal function, irrespective of concomitant atherosclerotic disease

    Use of Biomarkers in the Evaluation and Treatment of Hypertensive Patients

    Get PDF
    The current definition of hypertension is based on blood pressure values, and blood pressure also drives treatment decisions, is the most important treatment monitoring tool and helps estimating risk of hypertension related organ damage. In an era of precision medicine additional biomarkers are needed in the diagnosis and management of patients with hypertension. In this review we outline the areas in which functional, imaging and circulating biomarkers could help in a more individualised definition of hypertension and associated risk. We will cover biomarkers for diagnosis; of pathophysiology and prediction of hypertension; response to treatment, organ damage; and to monitor treatment. A clear focus is on the vasculature, the heart and the kidneys, whereas we see a need to further develop biomarkers of cerebral function in order to diagnose cognition deficits and monitor changes in cognition in the future to support addressing the growing burden of hypertension associated vascular dementia

    Proteomics in hypertension and other cardiovascular diseases

    No full text
    Hypertension is a major cardiovascular risk factor with a multifactorial pathogenesis, including genetic and environmental factors. In addition to hypothesis-driven strategies, unbiased approaches such as genomics, proteomics, and metabolomics are useful tools to help unravel the pathophysiology of hypertension and associated organ damage. During development of cardiovascular disease the key organs and tissues undergo extensive functional and structural changes that are characterized by alterations in the amount and type of proteins that are expressed. Proteomic approaches study the expression of large numbers of proteins in organs, tissues, cells, and body fluids. A number of different proteomic platforms are available, many of which combine two methods to separate proteins and peptides after an initial digestion step. Identification of these peptides and changes in their expression in parallel with disease processes or medical treatment will help to identify as yet unknown pathophysiological pathways. There is also potential to use proteomic signatures as biomarkers of cardiovascular disease that will contribute to population screening, diagnosis of diseases and their severity, and monitoring of therapeutic interventions

    Pulse wave analysis for the prediction of preeclampsia

    No full text
    Preeclampsia is associated with a number of changes to maternal vascular function. Assessment of arterial stiffness using pulse wave analysis (PWA) has been proposed as a means of predicting preeclampsia before the onset of clinically detectable disease. One hundred and eighty women with greater than or equal to2 risk factors for preeclampsia were examined at gestational weeks 16 and 28, of whom 17 (9.4%) developed preeclampsia. To study the effects of pregnancy itself women were also examined at 6–9 months post-natally; an additional 30 healthy non-pregnant women were also examined. PWA was performed using SphygmoCor; augmentation index (AIx), a marker of arterial wave reflection, was also measured using EndoPAT-2000. Women who developed preeclampsia were more likely to be overweight and had a higher brachial and central diastolic BP at gestational week 16 than those who remained normotensive. There was no difference in any parameter of arterial wave reflection between non-pregnant and pregnant women, nor between those who developed preeclampsia and those who remained normotensive, when examined at weeks 16 and 28 or post-natally. In this cohort of women with risk factors for preeclampsia, PWA did not provide additional information beyond brachial blood pressure and maternal risk factor profile about the risk of future development of preeclampsia

    The heart in an airbag

    No full text
    Pneumopericardium is a rare but potentially life-threatening clinical condition that must be considered in the differential diagnosis of chest pain. It is usually associated with chest trauma, infections, invasive procedures or mechanical ventilation. We report a case of pneumopericardium in a 25-year-old woman following a recent episode of forceful vomiting possibly acting as trigger factor. The diagnosis was made by posteroanterior chest radiography and confirmed with computed tomography. Contrast swallow test failed to detect oesophagopericardial fistulae and the patient was managed conservatively without further complication

    Fast nanostructured carbon microparticle synthesis by one-step high-flux plasma processing

    Get PDF
    This study demonstrates a fast one-step synthesis method for nanostructured carbon microparticles on graphite samples using high-flux plasma exposure. These structures are considered as potential candidates for energy applications such as Li-ion batteries and supercapacitors. The samples were exposed to plasmas in the linear plasma generator Pilot-PSI with an average hydrogen ion-flux of ∼1024&amp;nbsp;m−2s−1. The parameter window was mapped by varying the ion energy and flux, and surface temperature. The particle growth depended mainly on the sample gross-erosion and the resulting hydrocarbon concentration in the plasma. A minimum concentration was necessary to initiate particle formation. The surface of the sample was covered with microparticles with an average growth rate of 0.2&amp;nbsp;μm/s, which is significantly faster than most chemical methods. The particles were initially volumetrically grown in in the gas-phase by a multi-phase process and after deposition on the sample their growth proceeded. Scanning and transmission electron microscopy reveal that the core of these microparticles can be made of an agglomeration of nanoparticles, surrounded by crumpled layers of carbon nanowalls. Gas sorption analysis shows sufficient meso- and macropores for fast mass transport. In conclusion, this processing technique could be a novel synthesis route to nanostructure surfaces for electrochemical applications

    Urinary proteomic diagnosis of coronary artery disease: identification and clinical validation in 623 individuals

    No full text
    Objectives We studied the urinary proteome in a total of 623 individuals with and without coronary artery disease (CAD) in order to characterize multiple biomarkers that enable prediction of the presence of CAD. Methods Urine samples were analyzed by capillary electrophoresis coupled online to micro time-of-flight mass spectrometry. Results We defined a pattern of 238 CAD-specific polypeptides from comparison of 586 spot urine samples from 408 individuals. This pattern identified patients with CAD in a blinded cohort of 138 urine samples (71 patients with CAD and 67 healthy individuals) with high sensitivity and specificity (area under the receiver operator characteristic curve 87%, 95% confidence interval 81-92) and was superior to previously developed 15-marker (area under the receiver operator characteristic curve 68%, P &lt; 0.0001) and 17-marker panels (area under the receiver operator characteristic curve 77%, P &lt; 0.0001). The sequences of the discriminatory polypeptides include fragments of alpha-1-antitrypsin, collagen types 1 and 3, granin-like neuroendocrine peptide precursor, membrane-associated progesterone receptor component 1, sodium/potassium-transporting ATPase gamma chain and fibrinogen-alpha chain. Several biomarkers changed significantly toward the healthy signature following 2-year treatment with irbesartan, whereas short-term treatment with irbesartan did not significantly affect the polypeptide pattern. Conclusion Urinary proteomics identifies CAD with high confidence and might also be useful for monitoring the effects of therapeutic interventions
    corecore