28 research outputs found

    The Effect of Carbon Black on the Properties of Plasticised Wheat Gluten Biopolymer

    Get PDF
    Wheat gluten biopolymers generally become excessively rigid when processed without plasticisers, while the use of plasticisers, on the other hand, can deteriorate their mechanical properties. As such, this study investigated the effect of carbon black (CB) as a filler into glycerol-plasticised gluten to prepare gluten/CB biocomposites in order to eliminate the aforementioned drawback. Thus, biocomposites were manufactured using compression moulding followed by the determination of their mechanical, morphological, and chemical properties. The filler content of 4 wt% was found to be optimal for achieving increased tensile strength by 24%, and tensile modulus by 268% along with the toughness retention based on energy at break when compared with those of glycerol-plasticised gluten. When reaching the filler content up to 6 wt%, the tensile properties were found to be worsened, which can be ascribed to excessive agglomeration of carbon black at the high content levels within gluten matrices. Based on infrared spectroscopy, the results demonstrate an increased amount of beta -sheets, suggesting the formation of more aggregated protein networks induced by increasing the filler contents. However, the addition of fillers did not improve fire and water resistance in such bionanocomposites owing to the high blend ratio of plasticiser to gluten

    Corrosion Resistance Evaluation of Self-Healing Epoxy Coating Based on Dual-Component Capsules Containing Resin and Curing Agent

    No full text
    In this study, a self-healing epoxy coating was prepared by incorporating a dual capsule healing system including epoxy resin and its amine-based curing agent. The emulsion electrospray technique was used for encapsulating the healing agents in poly(styrene co-acrylonitrile) (SAN) as shell material. Characterizing the prepared microcapsules (MCs) by Scanning Electron Microscopy (SEM) revealed their spherical morphology with the particle size of 827 nm and 749 nm for epoxy and amine cores, respectively. Fourier Transform Infrared Spectroscopy (FT-IR) and thermogravimetric analysis (TGA) results confirmed successful encapsulation with no side chemical reaction between the encapsulated core and shell materials. The effects of embedding MCs on the physical and mechanical properties of the epoxy coating matrix were studied by pull-off adhesion, conical mandrel bending, and gloss tests. In addition, the prepared coatings’ self-healing performance was evaluated by Electrochemical Impedance Spectroscopy (EIS) and potentiodynamic polarization (Tafel) experiments. The results revealed that the coating sample containing 1 wt% of core-shell MCs (a mixture of epoxy and amine-containing MCs with a 50 : 50 weight ratio) showed the best corrosion performance with 99% self-healing efficiency

    Effect of neat and reinforced polyacrylonitrile nanofibers incorporation on interlaminar fracture toughness of carbon/epoxy composite

    No full text
    This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and Al2O3-PAN nanofibers. In particular, the paper focuses on the effect of adding Al2O3 nanopartiles in PAN nanofibers, which were incorporated in unidirectional (UD) laminates. The effectiveness of adding a thin film made of Al2O3-PAN on the fracture behavior of the carbon fiber reinforced polymer (CFRP) has been addressed by comparing the energy release rates, obtained by testing double cantilever beam (DCB) samples under mode I loading condition. A general improvement in interlaminar fracture energy of the CFRP is observed when the both neat PAN nanofibers and Al2O3-PAN nanofibers are interleaved. However, higher interlaminar strength has been observed for the samples with a thin film of Al2O3-PAN nanofibers, suggesting a better stress distribution and stress transformation from resin-rich area to reinforcement phase of hybrid composites

    Spider‐Silk‐Inspired Tough, Self‐Healing, and Melt‐Spinnable Ionogels

    No full text
    Abstract As stretchable conductive materials, ionogels have gained increasing attention. However, it still remains crucial to integrate multiple functions including mechanically robust, room temperature self‐healing capacity, facile processing, and recyclability into an ionogel‐based device with high potential for applications such as soft robots, electronic skins, and wearable electronics. Herein, inspired by the structure of spider silk, a multilevel hydrogen bonding strategy to effectively produce multi‐functional ionogels is proposed with a combination of the desirable properties. The ionogels are synthesized based on N‐isopropylacrylamide (NIPAM), N, N‐dimethylacrylamide (DMA), and ionic liquids (ILs) 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]). The synergistic hydrogen bonding interactions between PNIPAM chains, PDMA chains, and ILs endow the ionogels with improved mechanical strength along with fast self‐healing ability at ambient conditions. Furthermore, the synthesized ionogels show great capability for the continuous fabrication of the ionogel‐based fibers using the melt‐spinning process. The ionogel fibers exhibit spider‐silk‐like features with hysteresis behavior, indicating their excellent energy dissipation performance. Moreover, an interwoven network of ionogel fibers with strain and thermal sensing performance can accurately sense the location of objects. In addition, the ionogels show great recyclability and processability into different shapes using 3D printing. This work provides a new strategy to design superior ionogels for diverse applications

    Facile encapsulation of cyanoacrylate-based bioadhesive by electrospray method and investigation of the process parameters

    No full text
    Polymer microcapsules containing cyanoacrylates have represented a promising option to develop self-healing biomaterials. This study aims to develop an electrospray method for the preparation of capsules using poly(methyl methacrylate) (PMMA) as the encapsulant and ethyl 2-cyanoacrylate (EC) as the encapsulate. It also aims to study the effect of the electrospray process parameters on the size and morphology of the capsules. The capsules were characterized using Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and field-emission scanning electron microscopy (FE-SEM). Moreover, the effects of electrospray process parameters on the size were investigated by Taguchi experimental design. FTIR and TGA approved the presence of both PMMA and EC without further reaction. FE-SEM micrograph demonstrated that an appropriate choice of solvents, utilizing an appropriate PMMA:EC ratio and sufficient PMMA concentration are critical factors to produce capsules dominantly with an intact and spherical morphology. Utilizing various flow rates (0.3–0.5 ml/h) and applied voltage (18–26 kV), capsules were obtained with a 600–1000 nm size range. At constantly applied voltages, the increase in flow rate increased the capsule size up to 40% (ANOVA, p ≤ 0.05), while at constant flow rates, the increase in applied voltage reduced the average capsule size by 3.4–26% (ANOVA, p ≤ 0.05). The results from the Taguchi design represented the significance of solution flow rate, applied voltage, and solution concentration. It was shown that the most effective parameter on the size of capsules is flow rate. This research demonstrated that electrospray can be utilized as a convenient method for the preparation of sub-micron PMMA capsules containing EC. Furthermore, the morphology of the capsules is dominated by solvents, PMMA concentration, and PMMA:EC ratio, while the average size of the capsules can be altered by adjusting the flow rate and applied voltage of the electrospray process.Validerad;2024;Nivå 2;2024-04-08 (marisr);Full text license: CC BY</p

    Preparation and Characterization of Electrosprayed Nanocapsules Containing Coconut-Oil-Based Alkyd Resin for the Fabrication of Self-Healing Epoxy Coatings

    No full text
    In the present study, the preparation of nanocapsules using the coaxial electrospraying method was investigated. Poly(styrene-co-acrylonitrile) (SAN) was used as a shell material and coconut-oil-based alkyd resin (CAR) as a core. Chemical structure, thermal stability, and morphology of nanocapsules were characterized by Fourier transform infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA), and field emission scanning electron microscopy (FE-SEM), respectively. In addition, the formation of the core&ndash;shell structure was approved by transmission electron microscopy (TEM) and FE-SEM micrographs of the fractured nanocapsules. Furthermore, differential scanning calorimetry tests (DSC) were carried out to investigate the reactivity of released healing agents from the nanocapsules. The prepared nanocapsules were then incorporated into the epoxy resins and applied on the surfaces of the steel panels. The effect of capsule incorporation on the properties of the coating was evaluated. The self-healing performance of the coatings in the salty and acidic media was also assessed. The FTIR results revealed the presence of both shell and core in the prepared nanocapsules and proved that no reaction occurred between them. The morphological studies confirmed that the electrosprayed nanocapsules&rsquo; mean diameter was 708 &plusmn; 252 nm with an average shell thickness of 82 nm. The TGA test demonstrated the thermal stability of nanocapsules to be up to 270 &deg;C while the DSC results reveal a successful reaction between CAR and epoxy resin, especially in the acidic media. The electrochemical impedance spectroscopy (EIS) test results demonstrate that the best self-healing performance was achieved for the 2 and 1 wt.% nanocapsules incorporation in the NaCl, and HCl solution, respectively

    A Review of Recent Advances in Nanoengineered Polymer Composites

    No full text
    This review paper initially summarizes the latest developments in impact testing on polymer matrix composites collating the various analytical, numerical, and experimental studies performed since the year 2000. Subsequently, the scientific literature investigating nanofiller reinforced polymer composite matrices as well as self-healing polymer matrix composites by incorporating core-shell nanofibers is reviewed in-depth to provide a perspective on some novel advances in nanotechnology that have led to composite developments. Through this review, researchers can gain a representative idea of the state of the art in nanotechnology for polymer matrix composite engineering, providing a platform for further study of this increasingly industrially significant material, and to address the challenges in developing the next generation of advanced, high-performance materials

    Polyurethane-Nanolignin Composite Foam Coated with Propolis as a Platform for Wound Dressing: Synthesis and Characterization

    No full text
    This piece of research explores porous nanocomposite polyurethane (PU) foam synthesis, containing nanolignin (NL), coated with natural antimicrobial propolis for wound dressing. PU foam was synthesized using polyethylene glycol, glycerol, NL, and 1, 6-diisocyanato-hexane (NCO/OH ratio: 1.2) and water as blowing agent. The resultant foam was immersed in ethanolic extract of propolis (EEP). PU, NL-PU, and PU-NL/EEP foams were characterized from mechanical, morphological, and chemical perspectives. NL Incorporation into PU increased mechanical strength, while EEP coating showed lower strength than PU-NL/EEP. Morphological investigations confirmed an open-celled structure with a pore diameter of 150–200 μm, a density of nearly 0.2 g/cm3,, and porosity greater than 85%, which led to significantly high water absorption (267% for PU-NL/EEP). The hydrophilic nature of foams, measured by the contact angle, proved to be increased by NL addition and EEP coating. PU and PU-NL did not show important antibacterial features, while EEP coating resulted in a significant antibacterial efficiency. All foams revealed high biocompatibility toward L929 fibroblasts, with the highest cell viability and cell attachment for PU-NL/EEP. In vivo wound healing using Wistar rats’ full-thickness skin wound model confirmed that PU-NL/EEP exhibited an essentially higher wound healing efficacy compared with other foams. Hence, PU-NL/EEP foam could be a promising wound dressing candidate
    corecore