626 research outputs found

    Self-tuning of threshold for a two-state system

    Full text link
    A two-state system (TSS) under time-periodic perturbations (to be regarded as input signals) is studied in connection with self-tuning (ST) of threshold and stochastic resonance (SR). By ST, we observe the improvement of signal-to-noise ratio (SNR) in a weak noise region. Analytic approach to a tuning equation reveals that SNR improvement is possible also for a large noise region and this is demonstrated by Monte Carlo simulations of hopping processes in a TSS. ST and SR are discussed from a little more physical point of energy transfer (dissipation) rate, which behaves in a similar way as SNR. Finally ST is considered briefly for a double-well potential system (DWPS), which is closely related to the TSS

    Effect of hydration on conductivity of Ba4La x Ca2-X Nb2O11 + 0.5x (x = 0.5, 1, 1.5, 2) phases

    Full text link
    Substitution of Ca by La in initial cubic double perovskite Ba 4(Ca2Nb2)O11[VO]1 allowed obtaining phases with a similar structure with a lower content of structural oxygen vacancies, Ba4(La x Ca2-x Nb 2)O11 + 0.5x [VO]1-0.5x (x = 0.5, 1, 1.5, 2). The impedance technique was used to measure the temperature dependences of conductivity in the atmosphere of dry and humid air. Transport numbers determined using the EMF method in an oxygen-air and water steam concentration cells point to the predominantly hole nature of conductivity in the high-temperature region (T > 600 C) and to predominance of proton conductivity in the low-temperature region. Activation energies of hole and proton conductivity were calculated. Thermogravimetric measurements were carried out under heating from 25 to 1000 C with simultaneous mass-spectrometric determination of evolved H2O and CO2. The properties of the studied Ba4(La x Ca2-x Nb 2)O11 + 0.5x (x = 0.5, 1, 1.5, 2) phases were compared with the earlier studied Ba4-x La x (Ca2Nb 2)O11 + 0.5x phases with similar lanthanum content. © 2013 Pleiades Publishing, Ltd

    Multifractal characterization of stochastic resonance

    Full text link
    We use a multifractal formalism to study the effect of stochastic resonance in a noisy bistable system driven by various input signals. To characterize the response of a stochastic bistable system we introduce a new measure based on the calculation of a singularity spectrum for a return time sequence. We use wavelet transform modulus maxima method for the singularity spectrum computations. It is shown that the degree of multifractality defined as a width of singularity spectrum can be successfully used as a measure of complexity both in the case of periodic and aperiodic (stochastic or chaotic) input signals. We show that in the case of periodic driving force singularity spectrum can change its structure qualitatively becoming monofractal in the regime of stochastic synchronization. This fact allows us to consider the degree of multifractality as a new measure of stochastic synchronization also. Moreover, our calculations have shown that the effect of stochastic resonance can be catched by this measure even from a very short return time sequence. We use also the proposed approach to characterize the noise-enhanced dynamics of a coupled stochastic neurons model.Comment: 10 pages, 21 EPS-figures, RevTe

    Codimension-2 surfaces and their Hilbert spaces: low-energy clues for holography from general covariance

    Full text link
    We argue that the holographic principle may be hinted at already from low-energy considerations, assuming diffeomorphism invariance, quantum mechanics and Minkowski-like causality. We consider the states of finite spacelike hypersurfaces in a diffeomorphism-invariant QFT. A low-energy regularization is assumed. We note a natural dependence of the Hilbert space on a codimension-2 boundary surface. The Hilbert product is defined dynamically, in terms of transition amplitudes which are described by a path integral. We show that a canonical basis is incompatible with these assumptions, which opens the possibility for a smaller Hilbert-space dimension than canonically expected. We argue further that this dimension may decrease with surface area at constant volume, hinting at holographic area-proportionality. We draw comparisons with other approaches and setups, and propose an interpretation for the non-holographic space of graviton states at asymptotically-Minkowski null infinity.Comment: 13 pages, 9 eps figures. Added Section VI, improved presentation. Expanded and split the Introduction into two sections. Added Section VII. Added reference

    Collective dynamics of two-mode stochastic oscillators

    Full text link
    We study a system of two-mode stochastic oscillators coupled through their collective output. As a function of a relevant parameter four qualitatively distinct regimes of collective behavior are observed. In an extended region of the parameter space the periodicity of the collective output is enhanced by the considered coupling. This system can be used as a new model to describe synchronization-like phenomena in systems of units with two or more oscillation modes. The model can also explain how periodic dynamics can be generated by coupling largely stochastic units. Similar systems could be responsible for the emergence of rhythmic behavior in complex biological or sociological systems.Comment: 4 pages, RevTex, 5 figure

    Coherence Resonance and Noise-Induced Synchronization in Globally Coupled Hodgkin-Huxley Neurons

    Get PDF
    The coherence resonance (CR) of globally coupled Hodgkin-Huxley neurons is studied. When the neurons are set in the subthreshold regime near the firing threshold, the additive noise induces limit cycles. The coherence of the system is optimized by the noise. A bell-shaped curve is found for the peak height of power spectra of the spike train, being significantly different from a monotonic behavior for the single neuron. The coupling of the network can enhance CR in two different ways. In particular, when the coupling is strong enough, the synchronization of the system is induced and optimized by the noise. This synchronization leads to a high and wide plateau in the local measure of coherence curve. The local-noise-induced limit cycle can evolve to a refined spatiotemporal order through the dynamical optimization among the autonomous oscillation of an individual neuron, the coupling of the network, and the local noise.Comment: five pages, five figure

    Memory functions and Correlations in Additive Binary Markov Chains

    Full text link
    A theory of additive Markov chains with long-range memory, proposed earlier in Phys. Rev. E 68, 06117 (2003), is developed and used to describe statistical properties of long-range correlated systems. The convenient characteristics of such systems, a memory function, and its relation to the correlation properties of the systems are examined. Various methods for finding the memory function via the correlation function are proposed. The inverse problem (calculation of the correlation function by means of the prescribed memory function) is also solved. This is demonstrated for the analytically solvable model of the system with a step-wise memory function.Comment: 11 pages, 5 figure

    Nonequilibrium structural condition in the medical TiNi-based alloy surface layer treated by electron beam

    Get PDF
    The research is devoted to study the structural condition and their evolution from the surface to the depth of TiNi specimens treated by low-energy high-current electron beams with surface melting at a beam energy density E = 10 J/cm2, number of pulses N = 10, and pulse duration [tau] = 50 Ps. Determined thickness of the remelted layer, found that it has a layered structure in which each layer differs in phase composition and structural phase state. Refinement B2 phase lattice parameters in local areas showed the presence of strong inhomogeneous lattice strain

    Agent-based modeling of the impact of advertising on the regional economic cluster lifecycle

    Get PDF
    The aim of the study is the development and testing of an algorithm for modeling the impact of advertising on various stages of the life cycle of economic clusters. It is assumed, that the life cycle of the cluster consists of the stages: a diffuse group, a hidden cluster, an evolving cluster, a mature cluster, a collapsing cluster. Using the agent-based simulation methods, hierarchical clustering and chaos theory, the following results were obtained: a conceptual model of the behavior of cluster members for cluster formation processes at each stage of the cluster life cycle and an imitation model of the influence of advertising on the life cycle of the economic cluster; the patterns of various stages of the life cycle of the economic cluster and the functioning of the cluster without influence and under the influence of advertising were revealed. Advertising reduces the time at the stages of the associated life cycle of the cluster, increases the stage of maturity of the cluster. Companies that do not comply with the principles of clustering are under the influence of advertising and promotional activities. Such enterprises most often arise in the cluster at the stages of its formation
    corecore