6,897 research outputs found

    Supernova Constraints and Systematic Uncertainties from the First Three Years of the Supernova Legacy Survey

    Get PDF
    We combine high-redshift Type Ia supernovae from the first three years of the Supernova Legacy Survey (SNLS) with other supernova (SN) samples, primarily at lower redshifts, to form a high-quality joint sample of 472 SNe (123 low-z, 93 SDSS, 242 SNLS, and 14 Hubble Space Telescope). SN data alone require cosmic acceleration at >99.999% confidence, including systematic effects. For the dark energy equation of state parameter (assumed constant out to at least z = 1.4) in a flat universe, we find w = –0.91^(+0.16)_(–0.20)(stat)^(+0.07)_(–0.14)(sys) from SNe only, consistent with a cosmological constant. Our fits include a correction for the recently discovered relationship between host-galaxy mass and SN absolute brightness. We pay particular attention to systematic uncertainties, characterizing them using a systematic covariance matrix that incorporates the redshift dependence of these effects, as well as the shape-luminosity and color-luminosity relationships. Unlike previous work, we include the effects of systematic terms on the empirical light-curve models. The total systematic uncertainty is dominated by calibration terms. We describe how the systematic uncertainties can be reduced with soon to be available improved nearby and intermediate-redshift samples, particularly those calibrated onto USNO/SDSS-like systems

    The Radio Spectrum of TVLM513-46546: Constraints on the Coronal Properties of a Late M Dwarf

    Full text link
    We explore the radio emission from the M9 dwarf, TVLM513-46546, at multiple radio frequencies, determining the flux spectrum of persistent radio emission, as well as constraining the levels of circular polarization. Detections at both 3.6 and 6 cm provide spectral index measurement α\alpha (where Sννα_{\nu} \propto \nu^{\alpha}) of 0.4±0.1-0.4\pm0.1. A detection at 20 cm suggests that the spectral peak is between 1.4 and 5 GHz. The most stringent upper limits on circular polarization are at 3.6 and 6 cm, with V/I<V/I <15%. These characteristics agree well with those of typical parameters for early to mid M dwarfs, confirming that magnetic activity is present at levels comparable with those extrapolated from earlier M dwarfs. We apply analytic models to investigate the coronal properties under simple assumptions of dipole magnetic field geometry and radially varying nonthermal electron density distributions. Requiring the spectrum to be optically thin at frequencies higher than 5 GHz and reproducing the observed 3.6 cm fluxes constrains the magnetic field at the base to be less than about 500 G. There is no statistically significant periodicity in the 3.6 cm light curve, but it is consistent with low-level variability.Comment: 11 pages, 2 figures Accepted for publication in the Astrophysical Journa

    Probing the Intergalactic Medium with Fast Radio Bursts

    Get PDF
    The recently discovered fast radio bursts (FRBs), presumably of extra-galactic origin, have the potential to become a powerful probe of the intergalactic medium (IGM). We point out a few such potential applications. We provide expressions for the dispersion measure and rotation measure as a function of redshift, and we discuss the sensitivity of these measures to the HeII reionization and the IGM magnetic field. Finally we calculate the microlensing effect from an isolate, extragalctic stellar-mass compact object on the FRB spectrum. The time delays between the two lensing images will induce constructive and destructive interference, leaving a specific imprint on the spectra of FRBs. With a high all-sky rate, a large statistical sample of FRBs is expected to make these applications feasible.Comment: 4 pages, 1 figure; Typos for the variable x in Eq.6 corrected; Published in ApJ; Originally the Appendix E of arXiv:1402.4766; Separated from the main paper upon the referee's reques

    A macro-realism inequality for opto-electro-mechanical systems

    Full text link
    We show how to apply the Leggett-Garg inequality to opto-electro-mechanical systems near their quantum ground state. We find that by using a dichotomic quantum non-demolition measurement (via, e.g., an additional circuit-QED measurement device) either on the cavity or on the nanomechanical system itself, the Leggett-Garg inequality is violated. We argue that only measurements on the mechanical system itself give a truly unambigous violation of the Leggett-Garg inequality for the mechanical system. In this case, a violation of the Leggett-Garg inequality indicates physics beyond that of "macroscopic realism" is occurring in the mechanical system. Finally, we discuss the difficulties in using unbound non-dichotomic observables with the Leggett-Garg inequality.Comment: 9 pages, 2 figures. Added additional figure (2b), and associated conten

    Entanglement and the Phase Transition in Single Mode Superradiance

    Full text link
    We consider the entanglement properties of the quantum phase transition in the single-mode superradiance model, involving the interaction of a boson mode and an ensemble of atoms. For infinite system size, the atom-field entanglement of formation diverges logarithmically with the correlation length exponent. Using a continuous variable representation, we compare this to the divergence of the entropy in conformal field theories, and derive an exact expression for the scaled concurrence and the cusp-like non-analyticity of the momentum squeezing.Comment: 4 pages, 2 figue
    corecore