4 research outputs found

    A Fragment-Derived Clinical Candidate for Antagonism of X‑Linked and Cellular Inhibitor of Apoptosis Proteins: 1‑(6-[(4-Fluorophenyl)methyl]-5-(hydroxymethyl)-3,3-dimethyl‑1<i>H</i>,2<i>H</i>,3<i>H</i>‑pyrrolo[3,2‑<i>b</i>]pyridin-1-yl)-2-[(2<i>R</i>,5<i>R</i>)‑5-methyl-2-([(3R)-3-methylmorpholin-4-yl]methyl)piperazin-1-yl]ethan-1-one (ASTX660)

    No full text
    Inhibitor of apoptosis proteins (IAPs) are promising anticancer targets, given their roles in the evasion of apoptosis. Several peptidomimetic IAP antagonists, with inherent selectivity for cellular IAP (cIAP) over X-linked IAP (XIAP), have been tested in the clinic. A fragment screening approach followed by structure-based optimization has previously been reported that resulted in a low-nanomolar cIAP1 and XIAP antagonist lead molecule with a more balanced cIAP–XIAP profile. We now report the further structure-guided optimization of the lead, with a view to improving the metabolic stability and cardiac safety profile, to give the nonpeptidomimetic antagonist clinical candidate <b>27</b> (ASTX660), currently being tested in a phase 1/2 clinical trial (NCT02503423)

    A Fragment-Derived Clinical Candidate for Antagonism of X‑Linked and Cellular Inhibitor of Apoptosis Proteins: 1‑(6-[(4-Fluorophenyl)methyl]-5-(hydroxymethyl)-3,3-dimethyl‑1<i>H</i>,2<i>H</i>,3<i>H</i>‑pyrrolo[3,2‑<i>b</i>]pyridin-1-yl)-2-[(2<i>R</i>,5<i>R</i>)‑5-methyl-2-([(3R)-3-methylmorpholin-4-yl]methyl)piperazin-1-yl]ethan-1-one (ASTX660)

    No full text
    Inhibitor of apoptosis proteins (IAPs) are promising anticancer targets, given their roles in the evasion of apoptosis. Several peptidomimetic IAP antagonists, with inherent selectivity for cellular IAP (cIAP) over X-linked IAP (XIAP), have been tested in the clinic. A fragment screening approach followed by structure-based optimization has previously been reported that resulted in a low-nanomolar cIAP1 and XIAP antagonist lead molecule with a more balanced cIAP–XIAP profile. We now report the further structure-guided optimization of the lead, with a view to improving the metabolic stability and cardiac safety profile, to give the nonpeptidomimetic antagonist clinical candidate <b>27</b> (ASTX660), currently being tested in a phase 1/2 clinical trial (NCT02503423)

    Fragment-Based Discovery of a Potent, Orally Bioavailable Inhibitor That Modulates the Phosphorylation and Catalytic Activity of ERK1/2

    No full text
    Aberrant activation of the MAPK pathway drives cell proliferation in multiple cancers. Inhibitors of BRAF and MEK kinases are approved for the treatment of BRAF mutant melanoma, but resistance frequently emerges, often mediated by increased signaling through ERK1/2. Here, we describe the fragment-based generation of ERK1/2 inhibitors that block catalytic phosphorylation of downstream substrates such as RSK but also modulate phosphorylation of ERK1/2 by MEK without directly inhibiting MEK. X-ray crystallographic and biophysical fragment screening followed by structure-guided optimization and growth from the hinge into a pocket proximal to the C-α helix afforded highly potent ERK1/2 inhibitors with excellent kinome selectivity. In BRAF mutant cells, the lead compound suppresses pRSK and pERK levels and inhibits proliferation at low nanomolar concentrations. The lead exhibits tumor regression upon oral dosing in BRAF mutant xenograft models, providing a promising basis for further optimization toward clinical pERK1/2 modulating ERK1/2 inhibitors

    Fragment-Based Discovery of a Potent, Orally Bioavailable Inhibitor That Modulates the Phosphorylation and Catalytic Activity of ERK1/2

    No full text
    Aberrant activation of the MAPK pathway drives cell proliferation in multiple cancers. Inhibitors of BRAF and MEK kinases are approved for the treatment of BRAF mutant melanoma, but resistance frequently emerges, often mediated by increased signaling through ERK1/2. Here, we describe the fragment-based generation of ERK1/2 inhibitors that block catalytic phosphorylation of downstream substrates such as RSK but also modulate phosphorylation of ERK1/2 by MEK without directly inhibiting MEK. X-ray crystallographic and biophysical fragment screening followed by structure-guided optimization and growth from the hinge into a pocket proximal to the C-α helix afforded highly potent ERK1/2 inhibitors with excellent kinome selectivity. In BRAF mutant cells, the lead compound suppresses pRSK and pERK levels and inhibits proliferation at low nanomolar concentrations. The lead exhibits tumor regression upon oral dosing in BRAF mutant xenograft models, providing a promising basis for further optimization toward clinical pERK1/2 modulating ERK1/2 inhibitors
    corecore